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1. INTRODUCTION

The design and synthesis of materials with useful, novel
properties is one of the most active areas of contemporary
science, generating a veritable explosion of scientific activity in
areas such as biomaterials, cell and tissue engineering, organic
photovoltaics and light-emitting materials, and nanomaterials for
a myriad of medical and nonmedical applications. This new era of
materials design and discovery covers many disciplines from
chemistry and biology to physics and engineering. The vast
majority of this research effort is in experimental science, with
theoretical and computational science lagging somewhat behind.
Obviously, the ability to predict the properties of novel materials
prior to synthesis, and to understand the relationships between
the microscopic properties of molecular components and the
macroscopic materials properties, would be of substantial benefit
to materials designers. In view of the complexity of many new
materials, there is a strong need for machine learning methods
that can generate robust, predictive models linking these micro-
scopic and macroscopic properties. The application of such
methods to model materials properties is described as quantitative
structure�property relationship (QSPR) modeling. Although
these, and closely related methods such as quantitative structure�
activity relationships (QSAR), have proven to be very successful in
other areas of molecular design, there is surprisingly little published
work on their applications tomaterials, as can be seen in Figure 1.

This review summarizes the most commonly used predictive,
structure�property modeling methods and their recent applica-
tions to materials design. There are no published reviews of this
type of materials modeling, in spite of the small but increasing
number of materials QSPR modeling papers appearing in the
literature across a wide range of materials classes—nanomaterials,
catalysts, biomaterials, polymers, ionic liquids, supercritical CO2,
and ceramics, as shown in Figure 2. We anticipate that this
comprehensive, critical review will be useful to a broad spectrum
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of materials scientists who are interested in predicting properties of
newmaterials using robust, platform-modeling tools. Given the likely
large increase in number and size ofmaterials data sets, particularly as
high-throughput methods are more widely adopted, this review will
also be of interest tomany experimental scientistswhowish to extract
knowledge and value from their material libraries.

This review is organized as follows. Section 2 gives a brief
survey of methodologies used in QSPR modeling of materials in
work published to date. Section 3 describes the most commonly
used metrics for assessing the quality and predictivity of QSPR
models. Section 4 provides a timely summary of the types of
problems that can occur when QSPR modeling methods are
applied without due care. QSPR models for different materials
classes are critically reviewed in section 5. Section 5.1 is devoted
to QSPR models of nanomaterials such as fullerenes, carbon
nanotubes, and nanoparticles. Published work on modeling of
homogeneous, heterogeneous, and electro catalysts is reviewed
in section 5.2. Modeling studies of polymers in biomaterials and
nonbiological applications are presented in sections 5.3 and 5.4,
respectively. These sections are followed by a review of QSPR
studies of ionic liquids and supercritical carbon dioxide in
sections 5.5 and 5.6, respectively, and of ceramics in section
5.7. Conclusions and recommendations for future work are given
in sections 6 and 7. This review aims to provide a concise
summary of the QSPR modeling of materials research published

to date. We have conducted a critical analysis of the published
work so that readers will have a good understanding of the
methods employed, the quality of themodels, and the pitfalls that
can occur unless care is taken.

2. BRIEF SURVEY OF METHODS USED FOR QSPR
MODELING OF MATERIALS

QSPR methods are based on the hypothesis that changes in
molecular structure are reflected in changes in observed macro-
scopic properties of materials. QSPR modeling is a supervised
learning method that extracts the often-complex relationships
between the microscopic (usually molecular) structure and
properties of materials and their macroscopic properties (e.g.,
mechanical, thermal, electrical, etc.). Consequently, the key
requirement for QSPR modeling, which distinguishes it from
other physics-based computational methods like molecular dy-
namics, is a reliable data set of molecules or materials whose
microscopic structures and properties are reasonably well-
defined, together with their measured macroscopic properties of
interest. This is termed training data. Because all measured data is
associated with errors, and these errors will affect the reliability of
models, it is important to estimate the reliability of the training
data. This is relatively straightforward if all measurements have
been made in the same laboratory, but may pose problems if not.
The reliability of the experimental property chosen to be
modeled is clearly very important, because it is one of the factors
that determines the stability and predictivity of models. If the
experimental measurements have high uncertainties, or if the
chemical diversity or range of measured property values is too
small, generation of robust, predictive, and reliable models is not
possible. QSPR often assumes a normal distribution of the ex-
perimental property values, and this is sometimes not the case.
Where the property being modeled spans several orders of mag-
nitude, or the property values deviate greatly from the normal dis-
tribution, a transformation such as log(property), log (1/property)
is used.1 The final model cannot be more reliable than the original
data. However, machine learning methods used in QSPR models
can be quite tolerant of experimental error and missing data.

Materials properties can be modeled in two main ways
depending on the type of input variables used to construct the
model (although hybrid models in which these are combined are
also possible). First, process and synthesis conditions and com-
positions of starting materials can be used as input data (useful
when the exact structure and composition of the final material is
uncertain or unknown). Alternatively, molecular descriptors
(mathematical objects that capture the microscopic properties
of the material or system being modeled) and properties that are
related to the nature and connectivity of the microscopic com-
ponents (often, atoms) of the material can be used as input data.
However, somematerial properties depend not only on the intrinsic
material properties but also the history of the material: how it was
synthesized, processed, and prepared for testing. Importantly, in
some cases QSPR models will need to combine molecular and
physicochemical properties descriptors of materials and descriptors
related to the synthesis, processing, or sample preparation to
generate the most predictive and useful material property models.

QSPR modeling usually consist of four main operations:
calculating or measuring a pool of descriptors or other input
variables; choosing a small subset of these descriptors that are
relevant to the macroscopic material properties being modeled
(in some cases this step may not be required); generating the

Figure 1. Number of scientific publications on QSPR studies as a
function of publication year (ISI Web of Science).

Figure 2. Different classes of materials that have been the subject of
QSPR studies.
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often nonlinear relationship between the descriptors and the
global material property; and validating the model to assess its
reliability, robustness, predictivity, and domain of applicability. A
very recent review by Katritzky et al.1 provides an in-depth and
accessible summary of the main concepts involved in QSPR
modeling of physical properties of discrete molecules. Therefore,
only a summary of the important elements of the QSPR
modeling process is provided here.

2.1. Descriptors
Examples are given in section 5 where the synthesis conditions

and compositions of starting materials are used as descriptors.
Often, simple compositional and process parameters are found to
give useful models. However, in the vast majority of cases
reviewed, molecular descriptors are used to characterize the
microscopic properties of the materials for modeling purposes.
Polymers are problematic materials to model, as the chain length
and polydispersity are often not well characterized, especially for
large polymer libraries. It is also clearly not possible to represent
an entire polymer chain in terms of mathematical descriptors.
Fortunately, as the examples in section 5 show, it is often possible
tomodel polymer properties effectively by using themonomer or
repeating unit to generate molecular descriptors. Many different
types of molecular descriptors have been devised, and it is
beyond the scope of this review to describe them. Recent books
and review papers are available for further information on the
myriad of molecular descriptors that have been developed.2�4

They can be broadly categorized into the following categories:
• constitutional (the relative numbers of various atom types);
• topological (describing properties and connectivity of atoms
making up the material);

• physicochemical (relating to the water or lipid solubility,
dipole moment, formal charge, etc.);

• structural (describing the three-dimensional size, shape, and
surface properties of the molecule; and

• quantum-chemical (e.g., partial charges, polarizabilities,
multipole moments, orbital energies, etc. calculated using
semiempirical, density functional theory (DFT), and ab
initio quantum-chemical programs).

Many molecular descriptors can be calculated easily using
software packages such as DRAGON5,6 and CODESSA.7 An
important class of structural descriptor is three-dimensional
property fields, a type of 3D descriptor (describes the way
properties of molecules are distributed in three dimensions).
These parameters are generated by calculating interaction en-
ergies of probe atoms at grid points surrounding a molecule. The
property values at grid points around molecules constitute
descriptors that capture how the property is distributed in space.
The most commonly used molecular field descriptors are calcu-
lated using the CoMFA and CoMSIA approaches.8,9 These 3D
descriptor methods require molecules to be aligned in a con-
sistent way in space, and conformational properties of molecules
(their flexibility and distribution of 3D shapes) are usually
important. Several materials QSPR models described in section
5 have used molecular field property descriptors.

The correct choice of descriptors will clearly have a large
impact on the quality of the predictions the model can make. It
will also impact on the ability of the model to elucidate the
relationships betweenmolecular or other microscopic of physical
properties of the material and the useful property being modeled.
If effective descriptors can be found, particularly if a sparse subset
of them can be identified that model the property of interest well,

they can sometimes identify how these microscopic or property
features can be changed to improve the property of interest. It is
likely that new descriptors will need to be developed for some
materials.

2.2. QSPR Modeling Methods
Almost all QSPR modeling methods involve some sort of

regression.10 This can be a simple least-squares, multiple linear
regression (MLR) or, where the structure�property relationship
is not linear, a polynomial, bilinear, kernel, or neural network
method. In some cases, particularly when the property being
modeled is a category or class (e.g., strong, moderate, or weak)
rather than a continuous variable, other kernel-based methods
such as support vector machines can be employed, and decision
trees can often provide models that are readily interpretable.

The simplest QSPR modeling method is known as multiple
linear regression,11 and it can be carried out in common
spreadsheet programs. It assumes that the property being
modeled is a linear function of the descriptors.

yi ¼ w0 þ w1xi1 þ w2xi2 þ w3xi3 þ ::: ð1Þ
where yi is the property, xi are the descriptors, and w are fitted
coefficients (derived using the least-squares criterion) for the ith
material. In matrix notation, this can be written as

y ¼ Xw ð2Þ
This can be extended to polynomial regression.

yi ¼ w0 þ w1xi1 þ w2xi1
2 þ w3xi1

3 þ w4xi2
þ w5xi2

2 þ w6xi2
3::: ð3Þ

where polynomials of any order can be used, and the w are again
fitted coefficients derived using the least-squares criterion. Addi-
tional cross terms could also be added. However, polynomial
regression requires subjective decisions to be made about the
largest polynomial order and number of cross-terms to be used.

Because the number of descriptors may be much larger than
the size of the data set, MLR models can often be overfitted.
Overfitting generates many different equivalent models that use
different combinations of descriptors, none of which can reliably
predict properties of new data. Linear methods such as partial
least-squares (PLS) and principle component regression (PCR)
can be used to reduce the size of descriptor space and generate
models that are not overfitted. A linear regression model is found
by projecting the predicted variables and the observable variables
to a new space that is described by latent variables called principal
components (PCs). The three regression techniques differ in
that MLR aims to achieve the maximum correlation between the
X and Y, PCR captures maximum variance in the X, and PLS tries
to do both by maximizing covariance between the X and Y. In the
context of QSPR modeling, variance is defined as the average of
the sum of the squares of the difference between the observed
and predicted values. The standard deviation is the square root of
the variance.

Linear regressionmethods can also use a kernel trick to convert
a nonlinear problem into a linear one. This is achieved by fitting
a linear combination of nonlinear kernel functions such asGaussians
to the data. A very useful classification or regression method that
exploits the kernel trick is the support vector machine (SVM) first
introduced by Cortes and Vapnik.12 Support vector machines con-
struct a set of hyperplanes in a high-dimensional space, where the
data points can be linearly separated.



2892 dx.doi.org/10.1021/cr200066h |Chem. Rev. 2012, 112, 2889–2919

Chemical Reviews REVIEW

Decision trees (also known as classification trees or regression
trees) are classifiers that map observations about an object to
conclusions about the object’s properties. In these trees, leaves
represent classes and branches represent decisions on features
that lead to those classifications.13 Decision trees can be more
interpretable than neural networks, and support vector machines
and may give insight into the relative importance of the variables.

Artificial neural networks (ANNs)14,15 (Figure 3) are a more
versatile method of modeling nonlinear QSPR relationships than
polynomial regression. They aremachine learningmethods that can
model essentially any complex relationship given sufficient data.

The most commonly used neural network is the feed-forward
network. It consists of an input layer to receive the input data, one
or more hidden layers that perform nonlinear computation, and
one or more output layers that generate the value of the response
variable or property. The architecture of neural networks is often
described by the notation Nin�Nhidden�Nout (e.g., 9�3�1).
Nodes in successive layers are connected to each other by
weights. The inputs to the hidden and output nodes consist of
the sum of the value of each input variable multipled by the
weight of all connections leading into the node. This sum is
presented to a transfer function (usually linear for input and
output nodes and sigmoidal for hidden-layer nodes) to generate
the output for that node. When used for QSPR modeling, the
descriptors are presented at the input layer and the number of
nodes in that layer is the same as the number of descriptors (plus
a bias node that essentially plays the role of a constant in the
regression). The output layer usually contains a single node
corresponding to the property to be modeled, although some
examples are given in this review where multiple output nodes
have been used to model several materials properties simulta-
neously. A single hidden layer consisting of several nodes is most
commonly employed, although some examples have used multi-
ple hidden layers (but see the section discussing pitfalls). To train
a neural network, a data set consisting of a set of descriptors and a
measured property to be modeled are partitioned into training,
validation, and test sets. When training a neural network,
descriptors for each material in the training set are presented
to the neural network and a corresponding desired or target
response set at the output. The difference between the measured
value of the material property and the system output generates an
error that is fed backward through the network to adjust the
weights and minimize the error in the output. All materials in the
training set are presented repeatedly to the neural network until

the prediction performance is acceptable. The neural network
model is used to predict the properties of the validation set
during training, and when the error in this set reaches a
minimum, training is stopped.

Standard neural network methods such as fully connected
feed-forward networks can still overtrain or overfit data. These
problems can be largely overcome when the neural network
training includes a regularization step controlled by Bayesian
statistics, such as the BRANN16 network. Regularization can be
applied to any statistical modeling method to control the
complexity (the degree of nonlinearity) of models and improve
their ability to predict the properties of new molecules or
materials. Bayesian regularization is able to find the optimum
complexity for the neural network model and to define an
objective criterion for stopping neural network training so that
overtraining does not occur. It is not necessary to keep data aside
to form a validation set.

As with the extension of the MLR method by principal
components analysis (PCA) to reduce the number of descriptors,
so the BRANN method can be extended (BRANNLP,17) by
incorporating a Laplacian prior that allows some of the neural
network weights to be set identically to zero. If all of the weights
associated with a given index are set to zero, then the index itself
can be eliminated from the model. SomeQSAR/QSPR examples
that use this approach are described by Burden and Winkler18

and Tarasova et al.19

3. ASSESSING THE PERFORMANCE OF MODELS

The best measure of the usefulness of a model is how well it
predicts the properties of materials that were not used to
generate it. In practice, this ideal is rarely possible but is
approximated by partitioning the available training data into a
training set and test set. The training set is used to develop the
model, and the test set is used to estimate how well the model
predicts unseen data. Statistical criteria are used to assess the
quality of QSPR models. Commonly, these are the coefficient of
determination and the standard error of estimation or prediction.
The coefficient of determination (r2) is the square of the
correlation coefficient (r) between the predicted and measured
values of the property being modeled. It describes the proportion
of variability in a data set that is accounted for by the statistical
model and provides a measure of how well the model can predict
new outcomes. The root-mean-square (rms) values, adjusted for
degrees of freedom, of the difference between the predicted and
measured property values for the training and test sets is called
the standard error of estimation (SEE) and standard error of
prediction (SEP), respectively. SEE and SEP are more robust
estimates of the predictive ability of models because, unlike r2

and other statistical measures like the F-value, they do not
depend on the number of data points in the training set or the
number of descriptors in the model. Good QSPR models have r2

values close to 1.0 and SEE and SEP values that are similar and
small. Although the statistics of prediction of an independent
external test set provide the best estimate of the performance of a
model, cross-validation methods are often also reported. This
involves omitting one (leave-one-out, LOO) or more (leave-
many-out) data points from the training set, generating a QSPR
model using the remaining data points, then predicting the
properties of the data point(s) omitted. Each data point or set
of data points is omitted in turn, and when all data points have
been omitted at least once, the statistics of the predictivity are

Figure 3. Structure of a simple neural network.
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compiled. It has been shown that LOOmethods in particular give
an overly optimistic estimate of the predictivity of models.20 This
important point is discussed further in the next section.

4. COMMON QSPR MODELING ERRORS AND PITFALLS

Although QSPR methods are relatively simple to understand
and implement, it is also relatively easy for inexperienced
modellers to encounter pitfalls that can weaken their models.
Some of these are discussed in the recent review by Scior et al.21

and are summarized below.

4.1. Uninformative Descriptors
To successfully model materials properties, it is essential to

understand how to represent the microscopic (usually
molecular) properties of the material mathematically as descrip-
tors. Clearly, descriptors must contain information relevant to
the property being modeled. In the case of polymeric materials,
the selection of an appropriate structural motif for which to
generate descriptors is also important and often not intuitive.
However, as illustrated below, many polymer properties can be
modeled using the structure of the monomer or repeating unit.
Once descriptors have been generated, they may be uninforma-
tive for two main reasons. First, they may not contain sufficient
relevant information, making the construction of a useful model
impossible. Usually, uninformative descriptors of this type are
not problematic as it is clear when the model is poor. Second,
they may contain information relevant to the property being
modeled but may be obscure or arcane microscopic properties
derived from quantum-chemical calculations or topological
properties of the material’s components. Although such descrip-
tors can generate successful and useful models, it is hard to
understand how the microscopic properties influence the macro-
scopic (measured) properties in a mechanistic way. This also
makes it hard to “reverse engineer” the model to optimize
materials directly. However, this can be done very successfully
by generating large virtual libraries of materials and using the
model to predict properties of, and select suitable materials from,
the library. The effect of the domain of applicability (the
descriptor and property space of materials used to generate the
model) on the accuracy of the predictions must also be con-
sidered. Poor descriptor choice may also be more likely when
modeling materials properties because relatively few materials-
specific descriptors are available. Many of those used in current
QSPR models have been adapted from QSAR studies of the
biological and physicochemical properties of small organic
molecules and may not be completely suitable for materials
modeling.

4.2. Overfitting and Grossly Underdetermined Systems
QSPR modeling is a supervised statistical method. Models are

generated from independent variables that represent the molec-
ular or microscopic properties of the material and the dependent
variable, a measured material property. Like any regression
technique, QSPR models can suffer from overfitting. This occurs
when the number of adjustable parameters in the model (e.g.,
coefficients in an MLR model, or weights in a neural network)
exceeds the number of data points available to be modeled. In
statistical terms, these are called grossly underdetermined sys-
tems. The result is that the model becomes very good at
predicting the training data and very bad at predicting new data
not used in training (that is, the ability of the model to predict the
properties of new materials falls to zero). Parsimonious models

(those with a relatively simple structure and small number of
descriptors and fitted variables) generally have higher predictive
power than more complex models and are preferred. Overfitting
is not difficult to detect. Estimating the number of fitted variables
in the model and ensuring they do not exceed roughly half of the
number of data points is a useful rule of thumb. The statistics
from the models can also provide warning that overfitting is a
problem. If the statistical parameters (e.g., r2 and standard error)
for the training set and independent test set are similar, themodel
is probably valid. If the training set statistics are very good (high
r2 and low standard error) and substantially different to those of
the test set, overfitting should be suspected.

4.3. Descriptor Selection and Chance Correlations
It is possible to generate thousands of descriptors for a given

molecular structure. To avoid overfitting a QSPR model, the
number of descriptors must be reduced. The most common way
to do this employs PCA, a means of generating a smaller number
of orthogonal latent variables from a larger number of descrip-
tors. This can be very effective but suffers from being more
difficult to interpret than individual descriptors, and in not
eliminating descriptors that are truly uninformative and therefore
contribute noise to the model. A common error made by QSAR
and QSPR modellers is incorrectly sampling the large pool of
possible descriptors to generate a large number of smaller subsets
of descriptors. This is sometimes performed automatically by
evolutionary methods like genetic algorithms. Topliss22,23 and
others showed that this could generate spurious models that have
deceptively good statistical quality. Generating a large set of
random numbers as descriptors and then choosing a large
number of smaller subsets for QSPR models can often generate
apparently good models. Topliss described how selection of
smaller subsets of descriptors can be achieved while minimizing
chance correlations. Good statistically soundmethods of “feature
detection” or descriptor selection have been developed. A review
of variable reduction methods is given by Livingstone and Salt.24

Simple modeling methods such as principal component regres-
sion (PCR) and partial least squares (PLS)11 are often used in
these circumstances (see paper by Taylor et al.25 for an example
of the application of PLS to modeling properties of a large
combinatorial polymer library). PCR and PLS reduce the
dimensionality of the space, often considerably, by generating a
new set of orthogonal descriptors that are linear combinations of
the original descriptors. However, as with PCA, this can make
interpretation of models more difficult. Ideally, a variable-reduction
(feature-selection) method should completely remove uninfor-
mative descriptors and retain only those that are relevant to the
problem under study, to make the interpretation of the model
easier.

Sparse feature-detection methods employing novel mathema-
tical techniques have been discovered for handling grossly
underdetermined systems.17,18 A method that removes unneces-
sary variables by reducing their weights to zero makes use of
Bayesian statistics and a Laplacian prior which minimizes the
modulus ∑i=1

n |ŷi� yi| rather than the square ∑i=1
n (ŷi� yi)

2 of the
error in y that is commonly employed in the ordinary least-
squares method. This method, known as multiple linear regres-
sion with expectation maximization (MLREM), has been suc-
cessfully applied to QSAR/QSPR modeling.18,19 The aim of
feature selection is to choose the smallest number of the most
informative descriptors in a way that is sensitive to the context of
the model (i.e., the property being modeled).
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4.4. Modeling Complex, Nonlinear Structure�Property
Relationships

In many cases, simple linear statistical methods like multiple
linear regression can generate good models. This is possible when
the relationship between the microscopic or structural properties
of the material (as exemplified by descriptors) and the property
being modeled is approximately linear and additive. Whether or
not the relationship is linear will depend on both the property
being modeled and the type and relevance of the descriptors
employed. In a substantial number of cases, the structure�property
relationship is nonlinear. Polynomial regression methods, non-
linear kernel methods, and neural networks are then the methods
of choice for QSPR modeling. Properly applied, neural networks
are very useful because they do not rely on subjective decisions
on the complexity of the polynomial or type of kernel function to
be made, as they are universal approximators. This means they
can model any continuous function to any level of accuracy given
sufficient training data. However, the most widely used neural
network type, the feed-forward back-propagation neural net-
work, can also generate poor models if care is not taken.

As discussed above, neural networks can overfit models if the
number of adjustable weights in the network exceeds the number
of data points available. This is relatively easy to detect. Most
back-propagation neural networks can also be overtrained, where
they become better and better at predicting (memorizing) the
training data and worse at predicting new data. Traditionally this
is avoided by partitioning some of the data into an additional
validation set not used in training or testing. While the error in
the training set continues to become smaller as training con-
tinues, the error in the validation set drops to a minimum then
increases when overtraining begins. Training is stopped when the
validation set error is minimum. While this is a useful technique,
it requires further partitioning of the data (which may be scarce
or expensive to generate) from the model. Newer, robust neural
networks like the Bayesian regularized neural network16,17 use
Bayesian evidence to stop training and do not require a validation
data set. Another issue with neural networks is that they require
an architecture to be defined—that is, how many hidden layers
and how many nodes per hidden layer. If too many hidden layers
and nodes are used, the number of weights in the network also
increases, making overfitting more likely and compromising the
predictivity of the model. Usually a single hidden layer is used,
and the number of nodes in this layer is set by trial and error to
find the model with the best ability to predict data not used to
generate it. The choice of transfer function incorporated in the
nodes is also important. For regression models, linear transfer
functions are used for input and output layers, and nonlinear
(sigmoidal) functions are used for the hidden layer(s). For
classification models, a sigmoidal transfer function is used for
the output layer nodes as well. The newer Bayesian neural
networks16,17 also eliminate the problem of optimizing the
architecture of the neural network as they are relatively insensi-
tive to the network architecture and automatically optimize the
model complexity and predictivity. Applying Bayesian regular-
ization to a back-propagation neural network optimizes the
balance between bias (model is too simple to capture the
underlying QSPR relationship) and variance (model is fitting
the noise as well as the underlying QSPR relationship)

4.5. Validating QSPR Models
If all available data is used in training the model, it not possible

to estimate how predictive the model is when applied to new data

not used in training. Two main methods are used to estimate
model predictivity. Cross-validationmethods involve leaving one
or more data points out of the training data, building the model,
and predicting the property for the omitted data. This is done
multiple times until all data in the set has appeared in the training
and cross-validation sets at least once. Although widely used, as
previously mentioned this method has been shown to give an
overly optimistic estimate of the predictive power of the model.26

The gold standard for estimating model predictive power is to
predict properties for new data or materials that were not used in
building the model. This situation can be approximated by
partitioning the data set into training and test sets. It is not clear
that there is a single, best way to partition the data into training
and test sets, and this issue is still debated by the QSPRmodeling
community. If the partitioning is only done once, the training and
test sets are almost independent, especially if the portioning is
done by random selection. This provides the least optimistic, but
arguably most realistic, estimate of the ability of the model to
make new predictions. However, other QSAR modellers stress
the need to make multiple partitions of training and test sets so
that better statistical reliability can be achieved. However, in this
case the independence of the training and test sets is reduced, as
compounds in the data set appear more than once in both
training and test sets. A method that improves statistical relia-
bility (over random selection) but chooses the test set only once
is to select the test set by a supervised clustering technique. This
reduces the independence of training and test sets, but less so
than LOO and multiple test set selection methods. For large data
sets, random selection of the test set usually works well.
Partitioning of small data sets into training and test sets is
problematic as this leaves very few points in the test set, and
different random selections can generate widely differing esti-
mates of model predictivity. There is no ideal solution, and it may
be argued that very small data sets should not be modeled.
However, choosing the test set to be representative of the
training set using a clustering method, or multiple random
selections of the test set and combining the results of predictions,
are workable approximations, albeit also slightly optimistic in
their estimates of model predictivity. Kubinyi et al.27 and
Golbraikh and Tropsha28 have shown that the estimates of
model predictivity from leave-one-out (LOO) cross-validation
and external test sets do not correlate significantly. Therefore, the
use of an independent external test set not used in training is
preferred when possible.

4.6. Domain of Applicability of Models
Models are trained using data that have a defined range of

property values and a specific range of molecule types that
constitute the domain of applicability of the model. Like any
form of extrapolation, predicting materials properties outside of
the molecular or property space used to develop the model must
be done with care. Molecular similarity based on descriptors used
to develop the model can be a guide to how far outside the model
domain the prediction lies. Some probabilistic modeling meth-
ods such as Bayesian regularized neural networks that generate a
distribution of weights rather than a single set of weights can also
be used to estimate the domain of applicability of the model. As
models are likely to be used to predict properties of larger virtual
libraries of materials, the extent to which the library encompasses
the domain of applicability of the model needs to be carefully
considered. Done carefully, such analysis can yield useful in-
formation on the likely reliability of a prediction, depending on
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how far from the domain of applicability a given library member,
or newmaterial proposed for synthesis, lies. This important issue
has been reviewed for the very similar quantitative structure�
activity relationship (QSAR) method.29�32

4.7. Incorrect Handling of Outliers
Models can sometimes contain one or more data points that

are poorly predicted, although the remainder of the data set is
predicted well. Care must be taken when excluding these outliers.
Sometimes the data point has been incorrectly measured or
transcribed and when the property is measured again it conforms
to the prediction. However, the presence of outliers can also
indicate that the model is not capturing some important attribute
of the material. This may be due to the outlier being the only
material in the set with a specific attribute (e.g., a particular type
of functional group or atom), or it may be that an important
microscopic property of the material has not been accounted for
in the model and that the outlier represents an extreme point for
this property. Reexamination of the parameters used to train the
model, and the structure of the outlier material, can often identify
useful information relevant to the property being predicted that
has been overlooked in the modeling process. It is not acceptable
to exclude outliers simply because they “do not fit”.

5. MATERIALS CLASSES

We summarize the QSPR models of properties of materials.
The range of properties and material types modeled to data are
relatively limited, but the results show that the QSPR methods
have great potential to model a wider range of materials and
properties. However, some of the studies reported have sub-
stantial weaknesses in implementation, and these have been
critically evaluated where appropriate. In almost all studies, as
is standard practice in QSAR/QSPR modeling, the materials
property being modeled is converted into the logarithm of the
property. This is largely necessary because many properties span
several orders of magnitude in the data set. However, the
resulting log�log plots of predicted versus measured properties
may give a misleading visual impression of quality of the model.
We have included expanded descriptions of some of the studies
to illustratemore clearly how different types ofQSPR approaches
are used.

5.1. Nanomaterials
Nanomaterials are defined as structures with at least one

dimension of 100 nm or less. They have attracted considerable
interest since they were discovered in the 1990s due to their
novel properties that make them valuable as catalysts and
semiconductors and in space technology, cosmetics, environ-
mental engineering, medicine, and pharmacy.33,34 Factors such as
the small size, large surface area-to-volume ratio, shape, chemical
composition, and surface structure contribute to the unusual
physicochemical and biological properties of nanomaterials.
5.1.1. Fullerenes and Nanotubes. Most of the reports on

QSPR models for nanomaterials focus on the solubilities of
fullerenes, C70 and especially C60, because they were the first
fullerenes discovered and there is considerable interest in their
reactions and properties. In early reports, only a small number of
descriptors such as surface area, refractive index, polarity, and
polarizability were used to build QSPR models. Later reports
employed a large number of descriptors that included constitu-
tional, topological, geometrical, electrostatic, and quantum-
chemical because of their ease of calculation using CODESSA35

or DRAGON5 and quantum-chemical software. Different ap-
proaches such as MLR, heuristic, least-squares support vector
machine (LSSVM), and neural networks were applied, but,
unfortunately, the predictive ability of most of the models was
not reported.
The first semiquantitative fullerene structure�property model

was reported by Ruoff et al.36 They modeled the solubility of C60

in 47 solvents using diverse solvent parameters such as polariz-
ability, polarity, molecular size, and Hildebrand solubility. It was
found that no single parameter could adequately model the
solubility in all solvents, and they suggested that a combination of
solvent parameters would be more successful. Hildebrand solu-
bility parameters for 7 alcohols were also used by Heymann37 to
model the solubilities of C60 and C70 . They estimated the
solubilities of the fullerenes in water with an uncertainty of 1
order of magnitude by extrapolation of the alcohol models.
The solubilities of C60 were also the subject of a QSPR study

by Murray et al.38 Twenty-two organic solvents were studied in
this work. Geometries were optimized using quantum-chemical
calculations, and several descriptors related to the electrostatic
potential on the solvent surface were calculated. A complex,
nonlinear model describing the relationship between solubilities
of C60 and these solvent descriptors was obtained. The model
had an r2 value of 0.91 and could predict the solubilities of the
data set within a factor of 3. Themodel showed that solubility was
increased by large solvent molecules and bymoderately attractive
interactions that are relatively balanced between positive and
negative regions on the solute and solvent molecular surfaces.
However, the predictive ability of this model was not reported.
Stepwise linear regression was first used byMarcus39 to obtain

the QSPR models for solubilities of C60 and SF6, both of which
are globular, large, and nonpolar and interact with neighboring
molecules by dispersion forces. Different sets of solvent property
descriptors were found to describe the solubilities of these two
substances in organic and inorganic solvents.
The QSPR models for the solubility of C60 at 298 and 303 K

were

log x2 ¼ � 4:58ð ( 0:59Þ þ 7:72ð ( 0:84Þ � 10�2R
þ 2:53ð ( 0:30Þπ� � 8:05ð ( 1:27Þ
�10�2ETð30Þ � 0:190ð ( 0:080Þμ

n ¼ 55, r2 ¼ 0:86, F4, 48 ¼ 79, s ¼ 0:40 ð4Þ

log x2 ¼ 3:59ð ( 3:31Þ þ 3:46ð ( 1:08Þ � 10�2R

þ 5:10ð ( 0:91Þπ� � 31:7ð ( 10:2Þ � 10�2ETð30Þ
n ¼ 20, r2 ¼ 0:72, F3, 17 ¼ 17, s ¼ 0:52

ð5Þ
where x2 is the mole fraction of C60 in saturated solution, R is the
molar refractivity, π* is the polarity/polarizability, ET(30) is the
polarity index, and μ is the dipole moment of the solvent. Several
compounds that did not fit the model were removed as outliers.
For C60, solvent polarizability increases the solubility, while the
dipole moment reduces it. The different signs for the constants in
the models at 298 and 303 K suggest the models lack robustness,
probably due to lack of diversity in the solvents used to obtain the
303 Kmodel. No assessment of the ability of themodel to predict
solubility of C60 in new solvents was made. In a later study,
this research group generated a QSPR model of C60 solubilities
in a larger number of solvents.40 The linear regression models
described the log of the solubility of C60 in terms of four
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parameters—molar volume, molar refractivity, a parameter β
that is closely related to Abraham’s hydrogen bond basicity
parameter, and a complex parameter related to the hydrogen
bond donor ability (for protic solvents) and solvent polarity/
polarizability.40 Training set r2 values of 0.99 and 0.98 were
obtained for the four-descriptor models of these data at 298 and
303 K, and the QSPR equations were more similar than in the
first study, showing improved robustness. However, 18 of the
113 solvents were excluded from the model as outliers simply
because they were not well-predicted by the model (prediction
errors larger than 2 standard deviations). The model was used to
predict the solubilities of C60 in a range of polar solvents. Using
selected data from this data set in combination with other data, a
QSPR model was built by Makitra et al.41 that described the
solubilities of fullerene C60. Descriptors for three properties were
significant in the model: polarizability, polarity, and cohesive
energy density. Linear models were obtained with r2 = 0.71 for 89
solvents. When some solvents were excluded, the following
three-descriptor model was obtained

log X ¼ � 11:1 þ 30:1ð ( 1:44Þf ðnÞ
� ð2:75 ( 0:78Þf ðεÞ � 1:94ð ( 0:68Þ � 10�3δ2

N ¼ 81, r2 ¼ 0:87, s ¼ 0:467: ð6Þ
where f(n) is the polarizability, f(ε) is the polarity, and δ2 is
Hildebrand’s solubility parameter. Abraham et al.42 reported an
indirect QSPR-based method for predicting the solubilities of
C60 in 20 solvents using five solute descriptors relating to solvent
hydrogen bond acidity and basicity, volume, polarizability, and
molar refractivity. The authors did not report model statistics
except for standard deviation between the observed and calcu-
lated log solubilities, 0.36 log S (i.e., the model predicted
solubility to within a factor of 2.3). Apart from the solubilities,
other physicochemical properties such as excess molar refraction,
dipolarity, air�water partition, blood�brain barrier distribution,
and lipophilicity for C60 were also estimated.
Linear regression was also used by Sivaraman et al.43 to model

the solubility of C60 in 75 organic solvents. Three types of
descriptors were used: topological indices such as Randic con-
nectivity indices and Hall and Kier indices, polarizability, and
indicator variables denoting the numbers of various types of
atoms in the solvent, or position of substitution in aromatic
solvents. QSPR models were built for subsets of solvent types as
well as for combinations of these sets. Subsets often contained
small numbers of solvents (five or more), but they could be
modeled well by one or two parameters, usually polarizability and
indicator variables. However, model validation was only done for
the combination of the alkane, alkyl halide, and alcohol data sets
with the training set containing 29 solvents and validation set
containing 16 solvents. The training data was modeled more
accurately for individual subsets of data than for combined data
sets, and in most cases the best models had r2 values of g0.95.
Although polarizability and topological indices were the most
significant parameters in most QSPR models, indicator variables
(set to 1 if an specific attribute exists in the molecule, or zero if
not) were essential in several solubility models. The solubility of
C60 in a test set of 16 solvents was predicted quite reliably.
The first QSPR study of the solubilities of C60 using neural

networks was reported 10 years ago.44 Molecular descriptors
such as molar volume, polarizability, LUMO (lowest unoccupied
molecular orbital) energy, and saturated surface were calculated

for 134 organic solvents using semiempirical quantum-chemical
methods. A back-propagation neural network with five input
nodes, five hidden nodes, and one output node was used to
generate a solubility model having a standard deviation for
training set prediction of 0.58 log S (i.e., the model could predict
solubility within a factor of 4). Excluding several large outliers
from the model reduced the standard deviation to 0.45 log S (the
model could predict solubility within a factor of 3). However, this
model was not tested on external data sets and the network
architecture was relatively complex, meaning overfitting of the
data cannot be excluded. The ability of the model to predict the
training data is illustrated in Figure 4.
Neural networks were also used by Danauskas and Jurs to

model the solubility of C60 in 96 solvents.45 They divided the
data into three sets, a training set (76 solvents), a cross-validation
set for stopping network training (10 solvents), and an external
prediction set (10 solvents). Four types of quantum-chemical
and topological descriptors were used, individually and in
combination. Three types of models were generated: type I
employed multiple linear regression; type II used a three-layer,
feed-forward neural network with the best descriptors from type I
models; type III used a genetic algorithm to select descriptors
and a neural network to build the QSPRmodel. The simpleMLR
type I solubility model employed 9 descriptors chosen from a
reduced pool of 85 descriptors and exhibited a training set root-
mean-square error (RMSE) of 0.42 log S and a test set prediction
error of 0.50 log S. The best type II model, with fixed 9�3�1
network architecture, generated RMSE values of 0.30 log S for
the training set, 0.45 log S for the cross-validation set, and 0.52
log S for the prediction set. The architecture of the type II ANN
was optimized and an improved cost function was employed in
the network training, resulting in a new ANN model with a
training set RMSE of 0.26 log S, cross-validation RMSE of 0.25
log S, and test (prediction) set RMSE of 0.35 log S. The type III
modeling approach offered no advantages over type II.
Liu et al. reported C60 solubility models developed using a

novel type of support vector machine (LSSVM).46 Five classes of
molecular descriptors consisting of constitutional, topological,
geometrical, electrostatic, and quantum-chemical descriptors
were calculated for 128 organic solvents. A heuristic method
was used to select subsets of descriptors based on variance across

Figure 4. Ability of neural network model to predict the log of the
solubility of C60 in 134 solvents. Adapted with permission from ref 44.
Copyright 2000 American Chemical Society.
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the data set and correlation with the log of the solubility and with
each other. Linear and nonlinear solubility models were gener-
ated for 128 solvents and 122 solvents, respectively. In the
nonlinear model, the data set was separated into a training set
of 92 compounds and a test set of 30 compounds. Furthermore, a
process of leave-one-out cross-validation of the training set was
performed. The training set r2 values were 0.76 and 0.89 and the
RMSE values were 0.32 and 0.12 for the linear and nonlinear
models, respectively, suggesting the relationship between de-
scriptors and solubility was nonlinear. The LSSVM method was
quite complex, with additional steps required to optimize the
SVM kernel and parameters for the method.
Toropov and co-workers47�49 created QSPR models to pre-

dict the solubilities of fullerene C60 in organic solvents using a
Monte Carlo optimization procedure. The model descriptors
were correlation weights calculated from SMILES (simplified
molecular input line entry system) or InChI (international chemi-
cal identifier) text-based descriptions of organic structures.50 The
correlation weights were based on the number of occurrences of
each SMILES or InChI character in the training set, and the
resulting model had very good predictive performance. The first
study modeled a data set of 36 substituted benzene solvents,
separated into a training set of 25 compounds and a test set of 11
compounds. The training set model had r2 values of 0.81 and 0.79
and standard errors of estimation of 3.60 and 4.67 solubility units
for the training and test sets, respectively. Unlike other solubility
models, and standard practice in QSPR, the authors used the
solubility rather than the log of the solubility as the property
being modeled. This is likely to have compromised the quality of
the model as a second study by the same authors suggests. This
studymodeled a substantially larger data set of 122 solvents, 92 of
which were included in the training set and 30 of which were in
the test set. Toporov et al. again used descriptors based on
SMILES characters, but this time generated models of log
solubility rather than solubility. In spite of larger and more
chemically diverse training and test sets, the QSPR model had
r2 values of 0.86 and 0.89 and standard errors of 0.40 and 0.44 for
training and test sets, respectively. In comparison with the model
built using quantum-chemical descriptors,46 this model has
higher statistical quality. A third study used the same 122 solvent
data set but employed a different type of text-based description
of the molecular structure, the InChI system. Descriptors
based on InChI appeared to be more information-rich, as the
resulting linear QSPRmodel achieved higher statistical quality,
with r2 values of 0.94 and 0.94 and standard errors of 0.25 and
0.35 for the training and test sets, respectively. The errors in
these models correspond to uncertainties in solubility of a
factor of 2.
In contrast to the above reports where the solubility of C60 in

various solvents was modeled, the study of Martin et al.51

considered the solubilities of C60 and other polyaromatic com-
pounds in two solvents. Three hundred twenty-eight constitu-
tional, topological and geometrical, quantum-chemical
descriptors, polarizabilities, and dipole moments were calculated.
The QSPR models were derived using a heuristic forward
selection approach to generate the best multiple linear regression
models using CODESSA package.7 Leave-one-out and leave-
50%-out validations were performed for all proposedmodels. For
the three-descriptor QSPR model of solubility in n-heptane, the
training, leave-one-out, and leave-50%-out validation correla-
tion coefficients were 0.90, 0.84, and 0.82, respectively. For
the three-descriptor model of solubility in 1-octanol, the training,

leave-one-out, and leave-50%-out validation correlation coeffi-
cients were 0.97, 0.93, and 0.96, respectively. Significantly, the
solubilities of C60 in n-heptane and 1-octanol were predicted
correctly by QSPR models, even when these solvents were not
present in the training set. However, the applicability of these
models for predicting solubility of other fullerenes has been
questioned by Puzyn et al.33 due to the large structural difference
between the spherical fullerene and the near-planar hydrocarbons
(Figure 5), as well as the large difference in observed solubilities of
fullerene compared to the polycyclic aromatic compounds.
The biological properties of fullerene and its derivatives were

the subject of two 3D QSAR modeling studies by Durdagi and
co-workers.52,53 Fullerenes may be considered a crossover point
between single molecules and materials. In the first study, the
HIV-1 protease inhibitor (HIV-1 PR) activity of 49 fullerene
derivatives was modeled. The data set was partitioned into a
training set of 43 fullerenes and a test set of 6. The binding
interactions, binding energy, and binding affinity with HIV-1 PR
residues were analyzed. The optimized fullerene structures were
docked into the binding site of the protease using the FlexX
program, and molecular dynamics simulations were performed
for ligand-free and inhibitor-bound HIV-1 PR systems to provide
proper input structure of HIV-1 PR in docking simulations. The
3D QSAR molecular field-based method, comparative molecular
similarity indices analysis (CoMSIA),9 was then employed to
model the protease structure�activity relationships and to
predict novel compounds with improved inhibition effect. The
best CoMSIA model had a cross-validated r2 value of 0.74 and a
noncross-validated r2 value of 0.99. The CoMSIA models were
able to predict the activity of the 6 fullerenes in the test set to
within 1 order of magnitude. In a second study, a very similar
approach was employed to model the HIV-PR activities of 20
fullerene derivatives, most of which were in the training set of the
first study. These were partitioned into a training set of 17
compounds and a test set of 3 compounds. Both 3D QSAR/
comparative molecular field analysis (CoMFA) and CoMSIA
methods were used to derive 3D structure�activity models for
the training set. The two models generated LOO cross-validated
r2 values of 0.55 and 0.56 and noncross-validated r2 values of 0.99
and 1.00 for CoMFA and CoMSIA, respectively. Although the
LOO validation statistics weremodest, the CoMSIAmodel could
adequately predict the activity of the 3 fullerenes in the test set.
Toropov et al.54 also analyzed this data set using the same
SMILES-derived optimum correlation weights descriptors suc-
cessfully employed in the fullerene solubility modeling described
previously. The study compared the classical statistical modeling
paradigm, where data is split into training and test sets, with a
balance of correlations paradigm where subtraining, calibration,
and test sets were used. The rationale for the latter paradigm is
not clear, as the classical paradigm gave the most robust models
with r2 values of 0.75 and 0.67 and standard errors of 0.5 and 1.6
log EC50 for training and test sets, respectively.
Carbon nanotubes are another new class of nanoscale sub-

stances that were discovered in the early 1990s and have also
drawn intensive research interest because of their fascinating
structural features and properties as well as potential technolog-
ical applications.55 However, there has been only one report
on a QSPR study of carbon nanotubes,56 which unfortunately
was derived from computational models of water solubility
and octanol�water partition coefficients, so the QSPR model
was effectively a “model of a model”, not a model of experi-
mental data.
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5.1.2. Other Nanomaterials. Toropov’s group57,58 also
generated QSPR models for Young’s modulus and thermal
conductivity of nanomaterial data sets consisting of metal oxides,
carbides, nitrides, and silicides. They again used correlation
weights calculated from SMILES-like nomenclature and param-
eters relating to conditions of syntheses as descriptors. The
QSPR models were generated using Monte Carlo and least-
squares methods. The Young’s modulus QSPR model was based
on a data set of 29 nanomaterials, which was randomly separated
into a training set of 21 and a test set of 8 nanomaterials. The
model had r2 values of 0.98 and 0.90 and standard errors of 18
GPa and 35 GPa for the training and test sets, respectively.
Young’s modulus of nanomaterials could be predicted with an
error of ∼10%. Such models are useful for predicting the
properties of materials not yet synthesized. However, because
of the complexity of the descriptors used, it is not clear how the
model can be used to optimize properties of new nanomaterials

and how the domain of applicability of the model could be
estimated.
In a second example, a QSPR model of the thermal conduc-

tivity of nanomaterials was built using a data set consisting of 58
nanomaterials, 43 of which were included in the training set and
15 of which were in the test set. As with the Young’s modulus
model, a SMILES-like representation of the materials was used,
essentially capturing the identities of the atoms making up the
material, the bulk properties, and the temperature of synthesis.
The statistical significance of the model was characterized by r2

values of 0.87 and 0.86 and standard errors of 5.1 and 4.9W/m/K
for the training and test sets, respectively. Both of the above
models demonstrated a linear relationship between thermal
conductivity or Young’s modulus and the descriptor correlation
weights.
QSPRmodeling has also been applied to assist the synthesis of

magnetite nanoparticles in the presence of amino acids59 to

Figure 5. Molecular structures of polyaromatic hydrocarbons and fullerene studied byMartin et al.51 Reprinted with permission from ref 51. Copyright
2007 American Chemical Society.
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elucidate factors that contribute to the self-assembly of amino
acid/magnetite nanoparticles. Linear regression methods were
used to identify parameters that correlated with the number of
unit cells of magnetite contained in the nanoparticle core. The
saturation magnetization was found to be influenced by molec-
ular descriptors for electronegativity computed using the atomic
electric charges from quantum-chemical ab initio calculations.
The predictive ability of the model was not determined. Analysis
not only showed that carbon atoms play an important role in the
formation and self-assembling of the nanoparticles of amino
acid/magnetite but also confirmed the existence of the chemical
bonds between the oxygen atoms from the amino acid molecules
in the layer and the iron ions situated at the margin of the
magnetite core. However, care must be taken to not over-
interpret this model, as it is almost certainly a correlative rather
than causative relationship.

Although there have been a number of studies on the toxic
potential of materials at the nanoscale,34,60�63 only one QSAR/
QSPR model predicting the toxicity or biological effects of
nanomaterials has been reported.64 QSAR/QSPR studies of
nanomaterials generally lack a description of the domain of
applicability of the model,33 and calculation of descriptors is
difficult for some classes of materials. The challenge facing
development of the descriptors for these materials is partly due
to their structural diversity, as illustrated in Figure 6.

5.2. Catalysts
QSAR/QSPRmethods have been employed in catalyst design

and modeling. These models can be used to find optimum
reaction conditions, examine the effects of different factors on
the catalytic reactions, create virtual catalyst libraries, design new
catalysts with better performance, or extract general principles

Figure 6. Structural diversity of the nanoworld: zero-dimensional (point), one-dimensional (linear), fractal, two-dimensional, and three-dimensional
nanoparticle fragments. Reprinted with permission from ref 65. Copyright 2003 Maik Nauka Interperiodica.
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from high-dimensional data resulting from catalysis high-
throughput experimentation. QSPR methods have been applied
successfully to the modeling of chemical reactions primarily
involving small molecules. To keep this review focused on
materials, we describe only QSPR studies that relate to complex
catalyst materials or that employ simple or complex catalysts to
generate polymers or other materials, rather than discrete, small
organic molecules.
5.2.1. Homogeneous Catalysts. The properties of rela-

tively diverse homogeneous catalysts have been modeled by
QSPR methods. Some studies selected and designed catalysts
using data obtained by high-throughput synthesis methods.
There have been a small number of reports of QSPR studies of

olefin polymerization using metallocene catalysts. These cata-
lysts possess homogeneous active sites that lead to uniformity of
polymer microstructure and narrow molecular weight distribution.66

One of the earliest attempts to generate QSPR models for
metallocene catalysis was published in 1999.66 As metallocene
catalysts do not show any activity without cocatalysts, and their
activity depends on the content and species of cocatalysts, five
cocatalysts were also studied in this work. Molecular mechanics
and molecular dynamics calculations were employed to calculate
parameters such as atomic distances and charges for the most
stable structures. The authors interpreted the QSPR models in
terms of structural requirements for catalysis. However, the
model used three parameters plus a constant, and there were
only five measured catalyst activity data points (three of the
catalysts being inactive), making overfitting a significant issue.
Cruz and co-workers 67�69 also studied the catalytic activity of
metallocene catalysts. Data sets of 7,69 25,68 and 2267 metallo-
cene catalysts were modeled. The geometry of the active catalyst
species was optimized using ab initio and density functional
theory quantum-chemical calculations. The 3D molecular field
QSAR method, CoMFA, was used to build a model predicting
the catalytic activity of metallocene catalysts in ethylene polym-
erization, as well as the molecular weight of resulting polyethy-
lenes. Models employing one principal component had the best
predictive power. The steric (size and shape) properties of the
catalysts contributed >90% to both of the CoMFAmodels for the
activity and the polymermolecular weight. The cross-validated q2

and the final noncross-validated r2 values of all models spanned
the range of 0.40�0.71 and 0.78�1.00 for polymerization
activity and polymer molecular weight, respectively. The details

of the 3DQSPRmodeling of the 25metallocene catalysts data set
are illustrated below. Figure 7 shows the structures of the
catalysts and the alignment of the data set that was used to
generate the 3D QSPR models. Four types of molecular fields
were used: steric, electrostatic, LUMO, and local softness.68 The
LUMO field model was the most predictive with a LOO q2 value
of 0.53 for five PCs, SEP of 11.4� 103 kg PE (molmetallocene�
h� [ethylene])�1, and a noncross-validated r2 value of 0.97, SEE
of 5.5 � 103 kg PE (mol metallocene � h � [ethylene])�1.
The model showed how the spatial distribution of these

molecular properties enhanced or decreased catalysis by these
compounds. The light and dark gray areas in Figure 8a are the
LUMO field map, showing where the LUMO enhanced polym-
erization activity. Those areas corresponded to the location of the
LUMO orbital, illustrated in Figure 8b.68 The models were used
to successfully predict the activity of three additional catalysts
within experimental error.
In a separate study, QSPR models predicting the ethene/

1-hexene copolymer melting temperature were built using a data
set of 11 metallocene catalysts.70 Five structural descriptors were
calculated using quantum-chemical techniques, and partial least-
squares regression models were generated. The best QSPR
model for 8 catalysts used two PCs and had r2 values of 0.87
and 0.78 for training and leave-one-out cross-validation, respec-
tively. The predicted copolymer melting temperatures for the 3
test set catalysts were in error by up to 7 K. When all catalysts
were used in the model, a single PC yielded r2 values of 0.78 and
LOO q2 values of 0.66. The properties of an additional 11 catalysts

Figure 7. Structure of metallocene catalysts and alignment used to generate 3D QSPR model for polymerization activity. Reprinted with permission
from ref 68. Copyright 2005 American Chemical Society.

Figure 8. (Left) CoMFA maps for the LUMO field. (Right) 3D shape
of the LUMO field. Reprinted with permission from ref 68. Copyright
2005 American Chemical Society.
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were also predicted using the model. A larger training set would
be required if more accurate quantitative prediction was necessary.
Cross-coupling reactions have also been the subject of several

QSPR studies. Burello et al.71 analyzed 412 Heck cross-coupling
reactions to generate a QSPR model predicting catalyst perfor-
mance (turnover number and turnover frequency). The models
employed descriptors, such as dipole moment, HOMO (highest
occupied molecular orbital) and LUMO energies, atom charges,
and structural parameters that were relevant to the Heck reac-
tion. Descriptor correlations and PCA were used to eliminate
descriptors and reduce the dimensionality of the problem to
increase robustness and predictivity of the models. Linear
regression, artificial neural networks, and classification tree
methods were used to model the structure�property relation-
ships. The best models had prediction confidence levels as high
as 93%, but unfortunately, no statistics were provided for the
models. Palladium loading was the most relevant descriptor for
both turnover number and turnover frequency. The models were
used to predict the performance of 60 000 combinations of
virtual catalysts and reaction conditions in silico, although no
consideration was given to the domain of applicability of the
model in predicting properties of these combinations. an der
Heiden et al. modeled rate constants for almost 500 Sonogashira
cross-coupling reactions from a high-throughput study of reac-
tion kinetics in homogeneous catalysis.72 Density functional
theory was used to compute steric and electronic parameters,
which were used to build a statistical model using a goal-seeking
function. The model had a training set r2 value of 0.98. an der
Heiden et al. demonstrated that parallel multisubstrate screening
was useful to understand the kinetics of coupling reactions. No
tests of the model predictivity were reported.
In the final organometallic catalyst example, both 2D and 3D

QSPR models were built for a data set of 23 Ti�NdP organo-
metallic ethylene polymerization catalysts.73 The activity being
modeled was defined as the amount of polymer in g/mmol/h/
atm produced by each catalyst. The 3D QSPR model used the
SOMFA (self-organizing molecular field analysis) molecular
field-based modeling method74 employing only steric fields.
The 2D QSPR model employed diverse molecular descriptors
calculated using the DRAGON software. A small set of descrip-
tors was selected from the large pool calculated by DRAGON
using an unsupervised feature selection method and a genetic
algorithm. The 3D model had relatively poor statistical quality,
with an r2 value of 0.67 and a LOO cross-validated q2 value of
only 0.22, which may be due to the SOMFA method not being
statistically rigorous.75 When the catalytic performance of a test
set of 5 compounds was predicted using a reduced training set,
the quality of the prediction was substantially better, with the test
set r2 value exceeding 0.6 for some test set selections, worse for
others. Allowing for stereoisomerism in the cyclopentadiene
group improved the 3D model. The 2D QSPR model also used
the same training and test sets. As the number of descriptors in
the original pool (1 600) was much larger than the number of
reactions in the training set (∼70), the selection of a relevant
subset of descriptors for the QSPR model had to be done with care
to avoid chance correlations. The best 2D catalyst activitymodel had
r2 values of 0.97 and 0.92 for the training and test sets, respectively. A
limitation of this study was that titanium was not parametrized in
the DRAGON software, so it was replaced by carbon. Performance
of themodel was very dependent onwhich compoundswere chosen
for the test set, and the model appeared to have low robustness.
This variability was due to the small size of the data set.

5.2.2. Heterogeneous Catalysts. QSAR/QSPR analyses
for heterogeneous catalysts have also drawn considerable inter-
est. Diverse approaches have been used to model the catalytic
performance of a relatively wide range of materials. In most cases,
process variables such as synthesis conditions and catalyst
composition were used as descriptors in the QSPR models.
Applying the same method that was used to build the QSPR

model for homogeneous metallocene catalysts,66 Yao and
Tanaka76 studied a set of 10 heterogeneous Ziegler�Natta
catalyst�external donor systems. The catalytic activity and
molecular weight distribution of polymers synthesized using
the catalysts were modeled. Descriptors such as the interaction
energy between catalyst and external donor, distances between
Ti and Si atoms, principal moment of inertia, radius of gyration,
and molar refractivity were used in the model. A catalyst activity
model with four parameters (a relatively large number for the size
of the data set) had an r2 value of 0.93, and a two-parameter
model had an r2 value of 0.88. The molecular weight distribution
model had an r2 value of 0.88 for a four-parameter model and
0.75 for the more parsimonious model with a single parameter.
The main factors influencing the catalyst activity were the
interaction between the active site and the external donor and
the polarity of the external donor. The main factor influencing
the molecular weight distribution was the principal moment of
inertia of the external donor. The small size of the data set and
limited dynamic range in the properties being modeled were
limitations.
Neural networks have been used widely for designing hetero-

geneous catalysts. In one of the earliest studies,77 the acid
strengths of mixed oxides, the activity of a series of lanthanide
oxides in catalyzing the oxidation of butane, and the selectivities
toward various products in the oxidative dehydrogenation of
ethylbenzene on promoted SnO2 catalysts were modeled.
Although little statistical information was provided in the paper
and the details of the neural network architecture used were not
provided, the results suggested that neural networks were able to
make useful predictions of these properties.
Neural networks were also used to model the Cu/ZSM-5

zeolite-catalyzed NO decomposition reaction. Reaction condi-
tions such as temperature, Cu loading, O2 concentration, NO
concentration, and SiO2/Al2O3 mole ratio were used as
descriptors.78 No statistical results were presented, and the
models appeared to make good predictions of the training set
data. However, the complexity of the neural network used (in
particular, the number of weights) relative to the number of
experiments and the long neural net training time suggests the
models may have been overtrained and overfitted. However, the
conversion was predicted for one set of conditions not used in
training with good accuracy.
Hou et al.79 applied the same technique to design VSbWSn

(P, K, Cr, Mo)/SIAL catalysts for acrylonitrile synthesis from
propane using a training set of 19 and a test set of 4 catalysts. The
conversion of propane and the selectivity of acrylonitrile were
modeled using a neural network. Catalyst components were
represented as atom number fractions of P, K, Cr, Mo, and V and
the weight ratio of A1203/SiO2. In spite of a very long neural
network training time (which can result in overtraining) and the
large number of weights in the neural network relative to the size
of the training set (which can result in overfitting), the perfor-
mance of the model on the training and tests sets was good. The
model was used to optimize catalyst performance. However, the
dynamic range of all variables in the model was quite small,
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suggesting that it may not make reliable predictions of catalysts
outside the property space (domain of applicability) of the
training set.
Huang et al.80 modeled catalytic oxidative coupling of

methane using back-propagation neural networks. The aim was
to predict the C2 selectivity and the conversion of methane based
on the catalyst components. The training set comprised 25
catalysts, and the test set comprised 8 catalysts. The descriptors
used in the model were mol % of elements in the catalyst. A
number of relatively complex four-layer neural networks were
used to develop the QSPR models. The ability of all network
architectures to predict the training set was excellent despite the
number of network weights exceeding the number of data points
in the training set. The dynamic range of experimental data
placed a limit on the generalization ability of the model. In a later
related study,81 the same method was used to predict oxidative
dehydrogenation of ethane by 50 catalysts. Forty catalysts were
used in the training set, and 10 were used in the test set. The
molar composition of 13 elements present in the catalysts was
again used as descriptors for QSPR models that predicted the
mole fractions of 6 reaction products. As with previous neural
network studies, the architecture of the network was overly
complex, and the ability of the models to accurately predict the
test set was modest. Themodels were clearly overtrained because
the number of weights was much larger than the number of data
points; the training set was quite well-predicted, but the test set
was less so. Consequently, simpler neural network architectures
are likely to make substantially better predictions of this data set.
Moliner et al.82 reported a high-throughput synthesis study of

zeolites using factorial design. Larger data sets, such as those
generated by high-throughput experiments, are ideally suited to
QSPR modeling. The data for this study were generated by a
32� 42 factorial design, so they consisted of 144 points. These data
were partitioned into a training set (100 samples), neural net
validation set (used as a stopping criterion for the neural net
training, 20 samples), and a test set (24 samples). The inputs to
the neural network were the concentrations of reagents used in
the synthesis, and the properties being modeled were the crystal-
linity and relative amounts of two different zeolite phases. They
investigated a range of neural network topologies, ranging from
sparse, three-layer networks to more complex four-layer net-
works. The sparsest models, with the least complex neural
network architecture, were able to predict the crystallinity of
the two phases at least as accurately as themore complex network
architectures. The best QSPR models could predict the training
set percent crystallinity to within 5% and the test set crystallinity
to within 10%. These studies showed that neural networks show
considerable promise for accelerating development and optimi-
zation of new catalysts.
Neural networks have been also shown to give similar or better

prediction than classification/decision trees and support vector
machines for some data sets. A highly diverse data set of 467
catalysts used to oxidize propene with oxygen was used to
compare the modeling ability of neural networks and classifica-
tion trees.83,84 Three thousand one hundred seventy-nine attri-
butes were measured or calculated for the catalytic oxidation
experiments. These included the concentrations of elements,
methods of synthesis, enthalpies of formation, coordination
numbers, ionization energies, electronegativities, etc. Feature
selection based on chemical intuition rather than algorithms
was used to reduce this large number of attributes to 75. The
large data set was partitioned into training, validation, and test

sets (50%, 25%, 25%) for the neural network models and training
and test sets (67%, 33%) for the classification trees. A neural
network-based clustering method further reduced the number of
attributes to 45, and the classification trees algorithm reduced the
number of attributes to 23. The neural network consistently, and
sometimes markedly, outperformed both the classification tree
and a standard statistical method in spite of the very high
complexity of the neural network. Contingency tables were the
only statistical properties reported for the models.
Neural networks and decision trees were also compared for

their abilities to model zeolite crystallinity for 144 samples, using
synthesis conditions and X-ray diffraction data as descriptors.85

Principal components analysis and k-means clustering techni-
ques were employed to analyze data and for dimensional reduc-
tion. The models built using neural networks with two hidden
layers and a back-propagation training algorithm yielded good
predictive models, with an r2 value of 0.92 for both ITQ-21 and
ITQ-30 catalysts. However, although data were held aside in a
test set, the statistics for prediction of these data were not
reported. Given the complexity of the network used relative to
the data set size, the models may have been overfitted. It has also
been shown that the predictive ability of the neural network
model depends on the choice of descriptors.86

Support vector machine classificationmethods were applied to
heterogeneous catalysis by Baumes et al.87 Two data sets were
considered. The first one used data for 26 olefin epoxidation
catalysts to build QSPR models predicting the yield of cyclohex-
ene epoxide. The second data set of 24 isomerization catalysts
was used to model isomerization yield for light paraffins.
Numeric data on epoxidation and isomerization were converted
into two categories using a threshold. The inputs to these models
were the molar concentrations of several components of the
starting gel. The support vector machine models were shown to
be superior to those generated using classification trees, with
recognition rates for the two reactions as high as 90%. The paper
also provided a very useful summary of causes of overfitting in
QSPR models and how they can be overcome.
Recently, Wang et al. reported useful comparison of the ability

of neural networks, support vector machines, and classification
trees to model four different data catalyst sets.13 This work
suggested that, although multilayer neural networks performed
strongly, none of these algorithms gave the best performance on
all data sets.
Linear QSPR modeling methods were used to model Michael

addition to different substrates using ZrOCl2, silica gel, and
sodium dodecyl sulfate catalysts.88 The data set containing 46
reactions and 16 quantum-chemical molecular descriptors was
used to generate QSPRmodels of the logarithm of the yield/time
ratio. The models were able to predict the training set well, with
r2 values of 0.82�0.93 and test set r2 values of 0.76�0.85. Such
models would be useful for making quantitative predictions of
the reactivity of related reactions not used to train the model.
Bis(imino)pyridine and bis(arylimino)pyridine iron catalysts

of ethylamine polymerization were modeled in two separate
QSPR studies.89,90 Nineteen catalysts were used in the first study
to generate 3D QSPR models. Molecules were aligned using a
rule, and the QSAR method CoMFA and partial least-squares
analysis were used to generate the model. Although attempts
were made to model polymerization activity and the molecular
weight of the resultant polymer, only themolecular weight model
was statistically significant. The cross-validated q2 value of this
model was 0.63 whereas the r2 value for the training set was 0.94.
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The model could make good predictions of the polymer molec-
ular weight for 5 of 6 new catalysts not used in training themodel.
In the second study, simple linear correlation and multivariate

analyses were used to model catalytic activity of 22 bis-
(arylimino)pyridyl precatalysts (Figure 9).
Molecular descriptors derived from density functional theory

calculations were used to generate the models using 10 catalysts
as a training set.

Activityð106g=mmol h barÞ
¼ 18:51d1�2 � 18:49θ4�1�14 � 11:28ϕ þ 15:61 ð7Þ

where d1�2 is the distance Fe1�Cl2, θ4�1�14 is the angle
N4�Fe1�N14, and j is the dihedral angle (Cim�Nim�Caryl�
Caryl(Me)) (Figure 9). This simple three-term linear model
exhibited good predictivity, with the training set r2 value being
0.98 and the LOO cross-validated q2 value being 0.92.90 The
model made accurate predictions of catalytic activities of four
catalysts not used in constructing the model. However, it was not
possible to explain the relationship between these structural
descriptors and the mechanism of catalysis.
In some studies, the relationship between structural descrip-

tors and the desired property cannot be modeled and alternative
methods of optimization need to be employed. Beckers et al.91

analyzed 61 doped ceria catalysts in an attempt to predict the
performance in selective hydrogen combustion expressed by a
fitness value. Descriptors chosen included the dopant electro-
negativity, ionic radius, and dopant concentration. The results
showed that there was only a low correlation between the
predicted and real fitness of the catalysts. However, genetic
algorithms were able to screen doped ceria compositions for
their performance and could increase average fitness of the
catalysts over three optimization cycles. Tognetti et al.92 very
recently reported a QSPR study predicting the butane selectivity
in mixed (P,N)-nickel(II) catalyzed ethylene dimerization reac-
tions using a data set of 29 active species. The catalysts were
characterized by different substitution patterns on the nitrogen
and phosphorus atoms. Nineteen quantum-chemical descriptors,
such as geometrical parameters, atomic charges, isodesmic en-
ergies, polarizabilities, etc., from DFT calculations were used to
develop a linear QSPR model of selectivity. The model had very
modest predictive ability, thought to be due to the descriptors not
capturing the electronic properties of the catalysts adequately.
5.2.3. Electrocatalysts. Only one report of QSPR modeling

of electrocatalysts93 has been published. The electrochemical

performance of six samples of nonplatinum porphyrin-based
catalysts of oxygen reduction was predicted based on 24 XPS
spectral variables and electrochemical measurements. The com-
bination of genetic algorithm and multiple linear regression
generated a model that had excellent predictivity for the training
set and good cross-validation performance. However, the imbal-
ance between the small data set size and number of descriptors
risks overfitting the QSPR model.
In conclusion, various QSPR algorithms have been developed

and applied successfully to different areas of catalysis. However,
as this is a relatively new area of modeling, there is a risk of
generating flawed QSPR models because of poor choice of
descriptors, overfitting, or neural network overtraining issues.
This should not detract from the general high utility of the QSPR
method, because expertise and experience will grow as they
become more widely adopted and as larger data sets become
available. With the rapid growth of the high-throughput synthesis
techniques, QSPR models are powerful tools to design experi-
ments, screen very large catalyst libraries, and increase the scope
of the search space as well as the chance of discovering better,
cheaper, or more eco-friendly catalysts or processes.94

5.3. Biomaterials
Biomaterials, i.e., materials used in biological (usually medical)

applications, include metals, ceramics, and most commonly
polymers. This research area is undergoing a very exciting
expansionary phase and is starting to embrace high-throughput
methods.95 Common medical applications of biomaterials are
intraocular lenses in cataract surgery, prostheses in hip and knee
replacement, pacemakers, heart valves and stents in cardiovas-
cular disease treatment, skin grafts for burns victims, and artificial
vasculature.96,97 Another highly active biomaterials research area
is targeted drug delivery.98 Clearly, it would be very useful to be
able to predict suitable properties of biomaterials for a particular
application before synthesis. For the types of applications men-
tioned above, properties such as protein adsorption, cell attach-
ment, and cellular proliferation on the biomaterial surface are very
important. The Kohn biomaterials research group at Rutgers
University has pioneered the application of QSPR modeling to
biomaterials.

Most protein adsorption modeling on polymer surfaces has
involved the important protein fibrinogen.99 For example, Tang
and Eaton100 showed that an acute inflammatory response to
implanted biomaterials appeared to be initiated by adsorbed

Figure 9. Atom numbering around the metal center of the bis(arylimino)pyridyl catalyst core. Reprinted with permission from ref 90. Copyright 2009
Elsevier.
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fibrinogen. Fibrinogen is also the key protein that initiates blood
clotting. Smith et al.101 used neural networks to model the
fibrinogen adsorption on 45 polyarylate surfaces. These poly-
mers had been synthesized using 14 tyrosine-derived diphenol
and 8 diacid components. For each polyarylate (represented as
the monomer units), 104 2D largely topographical molecular
descriptors were computed.102 As they could not generate QSPR
models of high quality using computed molecular descriptors
alone, Smith et al. also employed two experimentally derived
quantities, glass transition temperature (Tg) and air�water
contact angle (CA), a measure of the hydrophobicity of the
surface. In an earlier study of fibrinogen adsorption on the same
polyarylate library, Weber at al.99 found that adsorption de-
creases as CA increases. Decision tree andMonte Carlo methods
were used to select the most relevant descriptors from a derived
larger pool. They obtained a modest correlation coefficient of
0.78 (explaining 61% of the variance in the data) for the training
set and 0.54 (explaining 29% of data variance) for the test set that
constituted half of the data set. The three most significant
descriptors in modeling fibrinogen adsorption were Tg, number
of hydrogen atoms, and the octanol�water partition coefficient,
log P. The same group revisited this data set subsequently103

using molecular dynamics simulations to compute 3D molecular
conformations that were input to the DRAGON program to
compute themolecular descriptors. The rationale for introducing
this protocol was that the strength of the interactions between
the protein and the polymer is strongly dependent on the three-
dimensional conformation of the polymer. Using this approach,
they required only computed molecular descriptors, removing
the need for experimentally measured properties like CA and Tg.
These models exhibited a modest improvement in the ability to
predict the test set. The Rutgers group reported another QSPR
model using the same data and PCA to select a subset of
descriptors from a pool of 109. They employed a neural network
to model fibrinogen adsorption, contact angle, and glass transi-
tion temperature.104 These models showed good ability to
predict the training and test set properties, consistent with the
relatively large experimental error in measurement of fibrinogen
adsorption.

Freely accessible protein adsorption data sets facilitate the
development of novel QSPR methodologies to model and
predict this important property. The Biomolecular Adsorption
database (BAD) (http://dbweb.liv.ac.uk/bad) established by the
Nicolau group (University of Liverpool) provides a valuable
public resource. This database105 was compiled from published
literature and contains data from >700 protein adsorption
experiments. Twenty-one proteins, including albumin, fibrino-
gen, lysozyme, immunoglobulin G, α-lactalbumin, myoglobulin,
fibronectin, and ribonuclease, are represented giving adsorption
data (protein concentration in solution and on surface) with their
dependence on temperature, buffer, pH, ionic strength, etc. In
addition to the curated experimental data, the Web site also
provides neural network applets to predict the adsorbed protein
concentration, with user-provided input of protein, solution
concentration, pH, ionic strength, and contact angle. Neural
network models of the data105 suggested that the predictive
accuracy of models could be improved if the BAD data are
divided into classes for hydrophobic and hydrophilic surfaces.
Finally, it should be mentioned that protein adsorption is
important not only for biomaterials in medical applications but
also for protein microarrays in proteomics experiments, as well as
for diagnostics in “lab-on-a-chip” microfluidic devices.

In biomaterial applications, the adsorbed proteins can mediate
interactions between the material and the cells in vivo. Tissue
engineering has a pressing need to be able to correlate quanti-
tative biological responses such as cellular proliferation to the
molecular structure of the biomaterial. With the complexity of
the interactions precluding an atomistic treatment, statistical
QSPR techniques are again an obvious method for tackling this
problem. Kholodovych et al.106 modeled the cellular response
(CR) of fetal rat lung fibroblasts (FRLF) to the same 112-
member polymer library described previously using PLS regres-
sion and PCA. The CR was defined as the metabolic activity of
the cells measured using a colorimetric assay normalized with
respect to a control (normalized metabolic activity (NMA)). As
the entire polymer structure could not be used to generate
descriptors, a linear chain consisting of three monomer units
was used to compute 15 molecular descriptors for each polymer.
A satisfactory r2 value of 0.62 was obtained for the NMA of a
training set of 62 polyarylates. The Rutgers group also modeled
the NMA of fetal rat lung fibroblasts for the same polymer library
using neural networks107 and MOE102 and DRAGON descrip-
tors. Again, they used Tg and contact angle as additional
descriptors and a decision tree algorithm with pseudo-Monte
Carlo experiments to rank and select final sets of descriptors.
Using between 3 and 17 descriptors, they obtainedQSPRmodels
with an average correlation coefficient of 0.75�0.79 and rms
error of 16�20% for the training set. Interestingly, they found
that very short R- (i.e., pendant) groups combined with short
diacid monomer components were required for high normalized
metabolic activity in the FRLFs. Kholodovych et al.108 modeled
cell attachment and cell growth of NIH3T3 cells from mouse
embryos and fibrinogen adsorption for a library of 79 poly-
methacrylates. Twenty to 22 polymers provided measurable
biological responses. They employed 2D molecular descriptors
calculated withMOE for the polymer units and used a novel type
of neural network, a polynomial neural network.109 The resulting
models had r2 values of 0.78, 0.95, and 0.78 for cell attachment,
cell growth, and fibrinogen adsorption data sets, respectively
(Figure 10). The models could make good predictions of the
properties of 4 or 5 test set compounds. Themodels were used to
predict the biological properties of 40 000 polymers in a virtual
library. However, the domain of applicability of these models
must be well-understood before an extrapolation from a few tens
to 40 000 polymers can be made with confidence.

Finally, it should be mentioned that Linati et al.110 have begun
applying QSPR techniques to bioactive glasses used in bone
defect repair applications. They derived simple linear relation-
ships between structural descriptors from molecular dynamics
simulations and various experimentally measured properties. In
spite of very small data sets, they obtained good single-variable
models with r2 values of 0.99 (density), 0.82 (crystallization
temperature), 0.94 (glass transition temperature), and between
0.74 and 0.93 for leaching of various elements from the glass.

5.4. Polymers (Nonbiological Applications)
Although natural polymers such as silk, cellulose, and rubber

have existed for a very long time, synthetic polymers have only
existed in industrial and consumer applications since the 19th
century. Given the diversity of applications of synthetic poly-
mers, a range of polymer properties have been the subject of
QSPR studies. These include thermophysical properties such
as glass transition temperature; thermal decomposition tem-
perature; Flory�Huggins parameters; electrical and optical
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properties such as dielectric constant, electrical conductivity, and
refractive index; transport properties such as gas and aqueous
diffusion and intrinsic viscosity; mechanical properties such as
impact resistance; etc.
5.4.1. QSPR Models of Glass Transition Temperature

Tg.The polymer property that has been most widely modeled by
QSPR is glass transition temperature, Tg. This is the point at
which a reversible transition between a hard and relatively brittle
state to a molten or rubber-like state occurs. By determining Tg,
the temperature range in which the polymers have useful proper-
ties can be found. Tg can be difficult to determine experimentally
because the phase transition may occur over a relatively wide
temperature range and depends on measurement technique,
duration, and pressure. Hence, since the 1960s, scientists have
attempted to predict the glass transition temperatures of poly-
mers using theoretical and computational methods.111 In the
interest of a balanced review, we have summarized many of the
QSPR models of Tg in Table 1 rather than describe them fully.
We discuss a subset of these that are of particular interest,
because of themodeling technique used or because they illustrate
some of the pitfalls in QSPR modeling summarized previously.
Early Tg modeling work was empirical and used employed

group additive property (GAP) methods. These commonly use
the Van Krevelen paradigm148 (a weighted sum of scalar
quantities associated with functional groups commonly occur-
ring in polymers) or Bicerano’s method149 (solubility parameters
and topological considerations independent of specific func-
tional groups). The disadvantage of the GAP approach is that
it is limited to polymers that contain previously investigated
structural groups. Computer-aided molecular modeling in com-
bination with GAP method can partially overcome the GAP
theory limitation, as was first shown by Hopfinger et al.111 Two
molecular properties, conformational entropy and mass mo-
ment, for 30 structurally diverse polymers were modeled using
conformational energy calculations. TheQSPRmodel usedMLR
and had an r2 value of 0.86; the entropy terms accounted for
>70% of the variance in the Tg values. These early models did not
include a test set or a cross-validation estimate of the predictivity
of the models. This modeling method was modified150 by using
charges calculated using the empirical Gasteiger�Marsili151

method. This improved the model predictability for polyolefins,
polyacrylates, and polymethacrylates. It was also shown that the
prediction error could be reduced if Tg values were predicted
for the same class of polymers after hierarchical cluster analysis.

Subsequently, partial atomic charge descriptors derived from
semiempirical quantum-chemical calculations were shown to
generate QSPR models with superior predictivity compared to
those using the Gasteiger�H€uckel method.151,113 The r2 values
for models of Tg for 62 polymers, built using quantum-chemical
descriptors were >0.98, compared with 0.96 for Gasteiger�
H€uckel charges. Standard errors of prediction were almost halved
when semiempirical charges were used. Schut et al. used the well-
known dependence of Tg on molecular weight and chain flex-
ibility of polymers to model this property for a library of 132
L-tyrosine derived homo-, co-, and terpolymers.115 In this work,
the ratio of mass-per-effective flexible bond was employed as a
descriptor. The QSPR models had high prediction accuracy
(4�6 K) and were applicable to polymers with any number of
comonomers.
MLR and simple descriptors were used to model Tg of styrene

copolymers and poly(acrylonitrile-co-methyl acrylate) (ANMA)
copolymers using a training set of 32 and test set of 16 polymers.
Three thermodynamic and intermolecular force descriptors were
used in the model.117

Tg ¼ 316:4 þ 5:58α þ 735:5qþ � 19:5Cv

r2 ¼ 0:98; s ¼ 6:9; F ¼ 527; n ¼ 32
ð8Þ

where q+ is the most positive net atomic charge on hydrogen
atoms in a molecule, α is the average polarizability of the
molecule, and Cv is the heat capacity. The QSPR model had an
r2 value of 0.98 for the training set and 0.98 for the test set. The
model was of particular interest because it was trained using only
data for the styrene polymers and yet could predict the properties
of the ANMA polymers very well.
Computationally inexpensive topological and geometrical

descriptors have also been successful in modeling and predicting
Tg for a representative subset of 17 polymers from a library of
112. QSPR models of Tg and CA were generated and used to
predict the properties of the entire library.121 Simple QSPR
models with a small number of descriptors and r2 values of 0.94
for Tg and 0.95 for CA were obtained. The most relevant
descriptors were molecular flexibility (number of rotatable
bonds) for the Tg model and the log P for the CAmodel. Indeed,
models using only these single descriptors could predict the
training set with an r2 value of 0.82. The Tg and CA of the
remaining 95 polymers were then used to validate the predictivity
of the models, and test set r2 values of 0.89 forTg and 0.92 for CA

Figure 10. Performance of QSPR models for (a) cell attachment, (b) cell growth, and (c) fibrinogen absorption for a data set of 22 polymethacrylates.
Reprinted with permission from 108. Copyright 2008 Elsevier.
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were obtained. The performance of the best Tg model (model
Tg-3 in Reynolds’s paper) and a simple model with a single
descriptor (model Tg-6) in Reynolds’s paper) (number of
rotatable bonds) is illustrated in Figure 11. The QSPR models
were used successfully to build focused libraries with specific
values of Tg and contact angle.
It is possible to predict properties of polymers using only the

chemical graph (the connectivity of each atom to the others in a
molecule) and the topological properties derived from this.
Garcia-Domenech and de Julian-Ortiz modeled the Tg and
refractive index of 88 structurally heterogeneous linear addition
polymers using this approach.122 The QSPR model for Tg that
used 10 descriptors had an r2 value of 0.89 for training set and
0.84 for LOO cross-validation, respectively. Xu and Chen
reported another QSPR study that used topological descriptors
to model Tg for a set of 80 organic light-emitting diode (OLED)
materials.124 A five-parameter QSPRmodel generated an r2 value
of 0.93 using stepwise MLR and leave-one-out cross-validation.
Morrill et al. also used the CODESSA descriptor program to

generate QSPR models of Tg for 13 amine�epoxy copolymers
with high accuracy (leave-one-out cross-validation r2 of 1.00)
using quantum-chemical descriptors.127 Different combinations
of descriptors generated equally valid models. It is not clear how
large a pool of possible descriptors was sampled to generate the
final models, so chance correlations could not be ruled out. The
small data set meant that an independent test set could not be
used to assess predictivity of the models.
Quite complex molecular mechanics and dynamics methods

have been used in some QSPR studies to predict the polymer Tg

values. Cypcar et al. modeled a set of 47 multicyclic and bulky
substituted acrylate and methacrylate polymers.128 Polymer
geometries and conformations were simulated with three differ-
ent force fields, and energy minimization and molecular dy-
namics calculations were performed to generate energy, volume,
and mass descriptors. The best models had high statistical
significance, with r2 values of 0.96 and standard error as low as
17 K. This method was also applied successfully to a set of 20
linear and branched alkyl acrylate and methacrylate polymers129

and a set of 39 aliphatic acrylate andmethacrylate polymers.130 In
another study the Tg of polymer�naphthopyran systems was
studied,131 generating a model with an r2 value of 0.97. This work
also investigated interactions betweennaphthopyran photochromic

pigments and the polymer matrix, showing that nonbonded van
der Waals interactions were important for the photochromic
behavior of the optical material and of commercial available
glasses. Given that Tg can be modeled and predicted using much
simpler descriptors, the use of complex, computationally inten-
sive molecular dynamics methods appears to not be justified.
Neural networks were first applied to model Tg values of

polymers by Sumpter and Noid.132 Multilayer feed-forward
neural networks and 18 topological indices for the repeat units
in the polymer were used to generate the models. The neural
networks employed 3 nodes in the hidden layer, and 9 polymer
properties were modeled. These were the molar volume, heat
capacity, change in heat capacity at the glass transition tempera-
ture, cohesive energy, solubility, glass transition temperature,
refractive index, thermal conductivity, and dielectric constant.
Unlike most of the other QSPR models using neural networks,
this study trained the network to predict several properties
simultaneously by using multiple output nodes. Three hundred
fifty-seven different polymers were used to build the QSPR
models, which had an average prediction error less than 3%.
Neural network models were derived for each physical property
separately, resulting in even higher accuracy of prediction.
The neural network approach was also applied by the same

authors to model a data set of 320 polymers consisting of 23
different classes of polymers.133 Tg models using a variety of
descriptor families could predict the training set with high
fidelity, with r2 values of 0.98. They were also successful in
building models for degradation temperature, tensile strength,
dielectric constant, Rockwell hardness, and several other useful
properties. Joyce et al.134 employed monomer structures repre-
sented as SMILES strings as the inputs for their neural network
models ofTg. Three hundred sixty polymers, represented as their
monomer structures, were used to train the network, and an
independent set of 89 monomer structures was used for testing
model performance. The neural networks were very complex,
with upward of 1 000 input descriptors, between 1 and 3 hidden
layers, each of which contained between 40 and 240 nodes. The
number of weights in such networks vastly exceeds the number of
polymers in the training set, making overfitting very likely. These
models gave RMSE values of <50 K for the training set and
maximum errors of 150�200 K for polymers in the test set. This
large discrepancy between training and test set errors, and the

Figure 11. Experimental versus predicted Tg values (�C) for a polymer library for (a) two-variable QSPR model performance and (b) simple model
using number of rotatable bonds only. Black marker for training set, white marker for test set. Reprinted with permission from ref 121. Copyright 1999
American Chemical Society.



2909 dx.doi.org/10.1021/cr200066h |Chem. Rev. 2012, 112, 2889–2919

Chemical Reviews REVIEW

poor prediction of the test set, indicate relatively poor general-
ization consistent with overfitting. A more sparse neural network
architecture would improve the predictive power of the models.
Sun et al.135 also used neural networks to model 271 homo-

polymers, 251 of which were included in the training set and 20 in
the test set. Six types of input vectors consisting of various types
of weighted functional group frequencies were used as the inputs
to a neural network. The r2 values for the models ranged from
0.69 to 0.98 for the training set and from 0.10 to 0.50 for the test
set. Although the best model could predict the Tg of 20 polymers
in the training set, it is not clear how many hidden layer nodes
were used in the neural networks and, therefore, whether the
model could have overfitted the data. The relatively poor
predictivity of most models on the test set, and large discrepan-
cies between training and test set performance, is indicative of
overfitting.
Quantum-chemical descriptors combined with neural net-

works were used by several authors to create QSPR models for
Tg. Mattioni and Jurs136 studied two different sets of polymers
using topological, electronic, and geometric descriptors. The
monomer structure was used to model Tg for the first set of 165
polymers, 17 of which were used in a test set and the remainder in
training the model. The repeating unit structures of a second
superset of 251 polymers were used to model Tg, with 86
additional polymers added to the polymers in set 1. More than
200 descriptors were calculated for the first set, and 128
topological descriptors were computed for the second set. Both
linear and nonlinear feature selection methods were employed to
reduce the number of descriptors to 62 and 35members for sets 1
and 2, respectively. The best model for set 1, built frommonomer
structure descriptors, had r2 values of 0.98 and 0.92 and standard
errors of 10 and 22 K for the training and test sets, respectively.
The optimum model for set 2, employing repeat unit structure
descriptors, had r2 values of 0.96 and 0.96 and standard errors of
21 and 22 K for training and test sets, respectively. Randomiza-
tion experiments destroyed the models, showing the original
models were valid and not the result of chance correlations.
Gao et al.137 generated back-propagation neural network

models for Tg, density, and refractive index of 87 polyamides.
Descriptors were calculated for repeating units end-capped by
hydrogen. Density functional theory quantum-chemical methods
were used to generate descriptors for the repeat units. The neural
network model for Tg gave an r

2 value of 0.81 and standard error
of 16 K for the test set, whereas theMLRmodel had an r2 value of
0.79 and standard error of 23 K. The neural network model for
density gave an r2 value of 0.81 and standard error of 0.042 for the
test set, compared to the MLR model that had an r2 value of 0.80
and standard error of 0.051. The neural network model for
refractive index gave an r2 value of 0.81 and standard error of
0.027 for the test set, whereas the MLR model had an r2 value of
0.82 and standard error of 0.018. Although these models had
lower statistical significance compared to others reported in the
literature, the similarity between the neural network andmultiple
linear regression models suggests that all three polymer proper-
ties are relatively linear functions of the chosen descriptors.
Liu and co-workers138,139 created QSPR models of molar

volume, refractive index, and glass transition temperature for a
data set of 35 polymethacrylates using stepwise regression and
neural network methods. MLR and neural network models had
very high statistical significance, with LOO cross-validated rms
errors of 16 K. No test set was used in this study. The Tg values of
113 polyacrylates and polystyrenes were also modeled using

neural networks of various degrees of complexity and quantum-
chemical descriptors, generating rms errors of 11 and 17 K for
training and test sets, respectively. The more complex neural
network architectures (4�8�4�1) were overfitted and had
lower predictivity.
Radial basis function (RBF) neural networks were employed

by Afantitis et al.141 to create QSPR models for Tg using the data
set of 88 polymers compiled by Katritzky et al.126 The model
used a set of four descriptors calculated by Cao and Lin.123 The
training set contained 44 polymers, and the test set contained 40
polymers (4 polymers were rejected as outliers). The RBF neural
network model had a test set r2 value of 0.93, a considerable
improvement over MLR models with r2 values of 0.82.
Recursive neural networks that allow variable-size label struc-

tures to be used as descriptors have been applied intensively by
Duce et al.142�146,152 The model input consisted of a hierarchical
set of labeled vertexes connected by edges that belong to
subclasses of chemical graphs (graphs describing how various
atoms are connected in a molecule). Labeled structures are
highly abstract graphical tools that can convey both the occur-
rences of specific atoms/groups in the compound and the
topological relationships expressed by the structure. This type
of descriptor generated QSPR models for different polymer
classes using the 2D graph of the repeating units. The could be
extended to both homopolymers and copolymers. These authors
initially studied a data set of 95 diverse polymers, 80 of which
were included in the training set and 15 in the test set. They built
Tg models using recursive neural networks143 that could predict
the test set with a mean average error of 10 K. They subsequently
modeled a set of 154 acyclic polymers142 using a training set of
127 compounds and a test set of 27 compounds. Both models
could predict Tg values with good accuracy (errors of ∼20 K in
test set). An extended data set including both acyclic and cyclic
structures were also analyzed using the same method.144 The Tg

values for 277 polymethacrylates were divided into training,
validation, and test sets containing 217, 54, and 6 polymers,
respectively. Tg for the test set was predicted with mean absolute
error of 15 K and standard deviation of 20 K. The largest data set
studied by these authors consisted of 615 polymers (340 homo-
polymers and 275 copolymers).146 This was split into a training
set of 494 and a test set of 121 compounds. The best model gave
good prediction with standard deviation of 11 K for the training
set and 18 K for the test set.
Fuzzy set theory was employed to study the relationship

between Tg and the structure of polymers by Sun et al.147 Two
hundred forty-one polymers were included in the training set
used to build QSPR models. Tg values for these polymers were
predicted with a standard deviation of 20 K. The model was
tested on 15 additional polymers, and the standard deviation for
the predictions was 30 K. These results suggested that fuzzy set
theory has potential for analyzing and predicting properties of
polymers.
Given the difficulties in measuring some polymer properties

such as Tg, models able to explain such a high amount of variance
in the data are essentially extracting all the information from the
data. The wide variety of successful and relatively simple QSPR
models for Tg suggests that this important polymer property is
relatively easy to predict using this modeling method.
5.4.2. Models of Other Synthetic Polymer Properties.

Another characteristic temperature of polymers that is very
important, particularly in high-temperature applications, is the
temperature of half-decomposition, Td,1/2, a measure of thermal
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stability. This is defined153 as the temperature at which polymer
loss of weight has reached half its final value during pyrolysis at a
constant rate of temperature rise. Yu et al.154 predicted the molar
thermal decomposition function, Yd,1/2 (approximately Td,1/2

multiplied by the repeat unit molecular weight149) for a set of 72
vinyl polymers using a stepwise MLR model. The final model
consisted of just 2 molecular descriptors, the quadrupole mo-
ment and the total energy of the monomer (computed using
DFT). The Yd,1/2 model had an r2 value of 0.98 for the training
set and 0.97 for a 17-polymer test set, with standard error of
prediction of 5.2 (K kg)/mol.
The solubility of polymers in solvents is important for

processes such as removal and recovery of synthesis byproducts,
unreacted substrates, and process solvents as well as for environ-
mental considerations. Several related properties or metrics of
polymers such as Flory�Huggins interaction parameter χ12,
cohesive energy Ecoh, solubility parameter δ, and lower critical
solution temperature θ have been modeled by QSPR methods.
According to Flory�Huggins solution theory, the enthalpy of
mixing between components 1 and 2 is proportional to χ12.

149 Xu
et al.155 used a genetic algorithm (GA) to generate a predictive
model of χ12 for a data set consisting of 7 polymers and 15
solvents (a total of 104 data points). DRAGON was used to
compute descriptors for each polymer and each solvent. Elim-
inating highly correlated descriptors and use of a genetic algo-
rithm reduced the large number of descriptors to a small subset.
The final cubic polynomial model predicted χ12 in the test set
with an r2 of 0.96. Xu et al.156 used MLR and neural network
models to predict the lower critical solution temperature (LCST,θ)
for a data set of 12 polymers and 67 solvents (a total of 169 data
points). Below the lower critical solution temperature θ, the
polymer is considered miscible in the solvent. DRAGON mo-
lecular descriptors for the polymer repeating units were used in
the MLR model. The 9 best descriptors from the MLR model
were used to develop a nonlinear neural network QSPR model.
Better results were obtained with the neural network model,
which had a standard error of 13 K for the training set, compared
to 26 K for theMLRmodel. The neural network model showed a
similar improvement for the test set containing 57 data points.
The solubility parameter δ for 51 polymers of structure

(�C1H2�C2R3R4�) was modeled by Yu et al.157 using stepwise
MLR. This resulted in a six-descriptor final model that gave a
standard error of 0.75 (J/cc)1/2 for the training set of 51
polymers and 1.01 (J/cc)1/2 for the test set of 46 polymers.
Note that the solubility parameter is related to the cohesive
energy by δ = (Ecoh/V)

1/2, where V is the molar volume, and
quantities such as δ and Ecoh can be measured only indirectly by
experiment.
QSPR methods also have been used to model the optical and

electrical properties of polymers. Optical properties of polymers
are important in coating applications (such as optical lenses) and
in the packaging industry. The refractive index, n, is the most
commonly modeled optical property of polymers. Katritzky
et al.158 modeled this property for a set of 95 amorphous
homopolymers using the CODESSA program. They obtained
an r2 value of 0.94 and a standard error of 0.018 for the best five-
parameter model using descriptors for the repeating unit derived
from quantum-chemical calculations. Similarly, in a comparative
study of oligomers of the repeating unit of the polymers, Holder
et al.159 found that dimers gave the most accurate QSPR model
for the refractive index of 70 polymers, including those used as
the resin component of dental restorative materials. Descriptors

from quantum-mechanical calculations were employed, i.e., the
HOMO�LUMO energy gap and a polarizability parameter
expressed as the difference between the maximum and minimum
partial charges in the molecule (Qmax � Qmin):

RI ¼ 1:997� 0:0338ðHOMO� LUMOÞ � 0:429ðQmax �QminÞ
n ¼ 60, r2 ¼ 0:96, LOO q2 ¼ 0:96, F ¼ 740, s ¼ 0:014 ð9Þ
The performance of the refractive index (RI) model is

illustrated in Figure 12.
The HOMO�LUMO energy gap was the descriptor that

made the largest contribution to the refractive index. The model
generated accurate predictions for the RI of 10 additional
polymers in a test set not used to generate the model.
The most important electrical applications of polymers in-

clude use as insulation in cabling and to encapsulate electronic
devices. The dielectric constant ε and the dielectric dissipation
factor or power factor (loss tangent, tan δ) of polymers have
been modeled with stepwise MLR118 and neural networks,160

respectively. Liu et al.118 computed quantum-mechanical de-
scriptors for the repeating units of 22 polyalkenes. The best
resultant three-variable MLR model predicted ε with an r2 value
of 0.91. The molecular descriptors in this model were ELUMO, q

�

(the most negative net atomic charge on the molecule), and S
(entropy), and the authors rationalize the positive correlation of
these properties with ε in their QSPR model. Yu et al.’s neural
network model was able to predict the loss tangent for 92 diverse
polymers with standard errors of 0.011 for the training set and
0.025 for the test set, substantially better than for the MLR
model.
Gas, aqueous, and other small-molecule diffusion, solubility,

and permeability in polymers are transport properties that are
important in practical applications ranging from food packaging
to pharmaceutical controlled release. Permeability is defined as
the product of solubility and diffusivity.149 Patel et al.161 used
MLR and genetic algorithms to construct a model for CO2, O2,
and N2 diffusion in 16 polymers. They computed 9 descriptors
such as conformational entropy, bulk modulus, cohesive energy
density, etc. for the polymers using the group additivity method.
Relatively parsimonious models containing 2 and 3 descriptors
had very good statistical quality and predictive performance.
They obtained r2 values of 0.85�0.87 for the gas diffusion
coefficient models, if 1 polymer outlier was excluded. Over-
whelmingly, the bulk modulus was found to be the most
significant descriptor for gas diffusion in polymers. This same

Figure 12. Calculated vs experimental polymer refractive index values
for the training set using the dimer QSAR. Reprinted with permission
from 159. Copyright 2006 Wiley VCH.
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conclusion was reached by another study from the same group
reported by Tokarski et al.162 They used molecular dynamics
calculations to characterize the polymers and diffusants and
found that O2 permeation was most highly correlated with the
cohesive energy of the polymer matrix.
Other important polymer properties that have been modeled

successfully with QSPR include intrinsic viscosity of polymer
solutions,163,164 impact resistance of polymers,165 plasticization
efficiency or the low-temperature flex point of poly(vinyl
chloride) (PVC) plasticizers,166 flexural modulus of dental poly-
mer materials,167 and imprinting factors of molecular imprinting
polymer compounds.168

As mentioned earlier, freely accessible databases of materials
structural and experimentally determined property data greatly
facilitate the development of QSPR modeling. Takaeda and
Yagi169 have compiled a database of polymer structural and
property data, PoLyInfo,170 from more than 12 000 literature
articles. This currently contains >220 000 data points, ranging
from properties such as Tg and thermal decomposition tempera-
ture to dielectric constant and tensile modulus, for monomers,
homopolymers, copolymers, blends, and composites.

5.5. Ionic Liquids
Ionic liquids (ILs) can be defined simply as ionic salts that

have low melting points. For example, ethylammonium nitrate
(melting point 285.7 K) is liquid at room temperature. This
definition can be broadened to include what are called “molten
salts”, with melting points higher than 100 �C. ILs can be further
classified as protic or aprotic depending on whether the cation is
protonated or not. A comprehensive review of protic ionic liquids
has been published recently by Greaves and Drummond.171

Common cations in ILs include imidazolium, pyridinium, alkyl
ammonium, etc., while common anions are halides, carboxylates,
and nitrates. Many ILs are able to dissolve a diversity of chemical
compounds. They also are quite thermostable and exhibit low
vapor pressures. Such properties make them ideal as solvents for
many chemical and industrial processes particularly “green”
chemistry processes involving separation, solvent extraction, and
catalysis. Their intrinsic conductivity can also be utilized in electro-
chemical applications, recently reviewed by Armand et al.172

With the recent rapid growth in research and application of
ionic liquids, it is only natural that there is also increasing interest

in modeling and predicting their properties using both molec-
ular simulations and statistical structure�property relationship
analyses. The current status of molecular simulations of
ILs has been reviewed recently by Maginn173 and will not be
discussed here.
5.5.1. Melting Points. As one of the dominant materials

properties of ILs is their melting point Tm, it is not surprising that
this was one of the first properties to be examined by QSPR
analyses. One of the issues encountered frequently with ILs is
that the melting points can vary depending on the experimental
technique, and even within a given technique because of the
existence of polymorphs. In some cases, the melting points can
be uncertain by >50 �C. Katritzky et al.174 extracted data for 126
structurally diverse pyridinium bromides from the Beilstein
database175 and modeled their melting points using MLR.
Experimental uncertainty was minimized by using only the most
recent data in the model. CODESSA was used to compute a large
pool of molecular descriptors. A heuristic approach was used to
eliminate descriptors from the pool. The best melting point
QSPR model that employed six descriptors had an r2 value of
0.79 and standard error of 23.0 K. Six data points lay outside the
range of(2σ (95% confidence limit) from the predicted value. A
leave-1/3-out cross-validation study showed that the model had
good predictivity within the chemical space of the training data.
The quality of the predictions of the entire data set and the cross-
validation sets is illustrated in Figure 13.
Although several topological descriptors and indices made

major contributions to the QSPR model, they were not easily
interpreted in terms of chemical structure, i.e., they would not be
very helpful to a synthetic organic chemist in deciding which
compound to synthesize to achieve a particular value of melting
point. The issue of the most appropriate descriptors and the
appropriate level of theory to compute them was considered in a
QSPR study of the melting points of 13 high-energy ILs based on
1-substituted 4-amino 1,2,4-triazolium bromide, nitrate, and
nitrocyanide salts.176 The MLRmodels for each anion employed
descriptors calculated in the gas phase using ab initio quantum-
chemical methods. Although the models were quite parsimo-
nious and statistically valid (r2 values of 0.87�0.89 and standard
errors of 21 and 23 K for the bromide class), they were less
accurate than those obtained in another study by the same
authors177 using descriptors computed at a lower level of theory.

Figure 13. Graphs of calculated versus measured ionic liquid melting points for (a) all data and (b) leave-1/3-out cross-validation sets. Reprinted with
permission from ref 174. Copyright 2002 American Chemical Society.
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The following QSPR model was derived for Tm of the nitrate
salts:

Tm ¼ � 284� 214HDCA1Z � 3:94� 104NRImin, C

þ 3:16� 103FHDCA

N ¼ 13, r2 ¼ 0:933, F ¼ 41:5, s ¼ 14, q2 ¼ 0:872

ð10Þ
HDCA1Z and FHDCA are measures of the hydrogen bond-

donating ability of the cation, and NRImin,C is the minimum
nucleophilic reactivity index for a carbon atom. No attempt was
made to generate a global model containing data from all three
anion classes. IL densities could also be predicted very accurately
using QSPR models. The authors presented the important
conclusion that QSPR models would be improved by the design
of ionic liquid-specific descriptors rather than resorting to higher
levels of theory to compute the descriptors. This is a conclusion
that could be generalized to QSPR of all classes of materials. It
should also be noted that for a few of the ILs in this study the glass
transition temperature was used instead of the melting point, as
the glass formed much more readily than the crystal from the
liquid state. The ILs in the study were also a homologous series,
so they were probably easier to model than the more diverse set
reported by Katritzky et al.
The largest IL QSPR study to date has been that of Varnek

et al.178 who studied the melting points of 717 ILs consisting of
126 pyridinium, 384 imidazolium, and 207 quaternary ammo-
nium bromides. They employed a range of modeling methods
including MLR, PLS, support vector machines, and neural net-
works. The nonlinear SVM and neural networkmodels were only
slightly better than the linear models. Very large pools of
descriptors, ranging in size from 2 000 to 13 500, were generated
for some of the models. Some of the models reported used
relatively large subsets of these descriptors in the model, ranging
between 50 and 1 500, so variable reductionmethods such as PLS
were employed. Most QSPRmodeling methods of the combined
data set generated melting point models of similar predictive
power as assessed by 5-fold cross-validation. Test set r2 values
ranged between 0.52 and 0.62, except for the MLR model, and
rms errors of prediction were 40 ( 2 K. When models were
generated for the pyridinium bromide, imidazolinium bromide,
and ammonium bromide data subsets individually, the quality of
prediction was similar to the combined set, except for the small
pyridinium set that was predictedwith lower rms error (26�35K).
The authors concluded that neural networks generated the most
predictive models, and MLR and clustering methods, such as
k-nearest neighbors, generated the least. The melting point
QSPR model rms errors of 38�46 �C for the full set of data
are reasonable given the difficulties in accurately measuring the
melting points because of polymorphs and glass formation. The
study was important because it showed that it was possible to
generate predictive models of properties of ionic liquids from
large, moderately diverse data sets. Carrera et al.179 published a
QSPR study of the melting points of 101 guanidinium salts using
counterpropagation neural networks. The model that included
all four counterions exhibited r2 values of 0.87 and 0.82 and rms
errors of 30 and 24 K for training and test sets, respectively. This
was one of the few studies where the QSPR model was used to
design new ILs with low melting points that were subsequently
synthesized and found to have properties in reasonable agree-
ment with the model predictions.

5.5.2. Models of Other Ionic Liquid Properties. There
have been a number of studies where QSPR methods were
employed to model and predict the activity coefficient at infinite
dilution, γi

∞,180,181 or related quantities such as the Ostwald
solubility coefficient log L or partition coefficient log P182 of
organic compounds in ILs. Both Eike et al.181 and Tamm and
Burk180 modeled the same set of 38 solutes in the same 3 ILs, but
at different temperatures, whereas Katritzky et al.182 modeled
data for 92 organic solutes in 7 imidazolium ILs and 1 pyridinium
IL. All groups reported good models employing a small number
descriptors and having r2 values >0.90. However, this level of
performance is achieved by modeling each IL as a separate
chemical class. At infinite dilution, solute�solvent interactions
are paramount, and accordingly, molecular descriptors such as
number of hydrogen donor sites and charge-related descriptors
were found tomake themost significant contributions. Xi et al.183

developed aQSPRmodel with an inversely linear dependence on
the temperature for a set of 39 solutes in the IL trihexyl-
(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. It
is interesting to speculate on whether an accurate single model
across spanning diverse classes of ILs could be obtained using
descriptors specific to ILs.
Viscosity and conductivity are two properties that are impor-

tant in ionic liquid applications such as catalysis, electrodeposi-
tion, and electrolyte solutions in batteries. In general, there is an
inverse relationship between viscosity and conductivity in ILs.
Bini et al.184 reported aQSPR study of 33 imidazolium, pyridium,
piperidinium, and morpholinium ILs and summarized the diffi-
culties in using data collected from various literature sources, as
well as in measuring viscosity accurately for ILs. To eliminate this
problem, Bini et al. used data collected from ILs synthesized and
measured at their own laboratory. They also attempted to use
descriptors that were more easily interpretable in terms of
structure. Four-descriptor models for conductivity and viscosity
having r2 values of 0.94 and 0.95, respectively, were obtained. A
lower-quality model for viscosity was obtained for viscosity at a
lower temperature, which was ascribed to non-Newtonian beha-
vior of the ILs. Tochigi and co-workers,185,186 differently from
most of the other IL QSPR studies, used a genetic algorithm
(GA) to select the best coefficients in polynomial regression
QSPR models of conductivity and viscosity of ILs. Their regres-
sionmethod was found to give better models than didMLR. This
group186 also showed how QSPR models of IL properties can be
used to “reverse engineer” ILs. They used their models to
calculate property values for a large virtual library of ILs
generated by varying the anion species and side chain, until
combinations of cations and anions that were predicted to have
the desired values of conductivity or viscosity were obtained.
This method is applicable to all QSPR models of materials
properties, even when relatively obscure or arcane descriptors
are used, provided that the domains of applicability of the models
are understood. Finally, Billard et al.187 constructed a neural
network model using the viscosity data for 99 ILs at 25 �C. After
using 5-fold external cross-validation to assess the predictive
performance of the model (R2 = 0.73, RMSE = 67.5 cP), they
predicted the viscosity of 23 new ILs and obtained a prediction
error of 73 cP. Finally, they synthesized three new ILs and
compared the measured value of the viscosity with that
predicted by the model: the agreement was only qualitative.
They ascribed the relatively modest quantitative precision of
the models to the error in the experimental data collected from
different sources. However, it must also be said that 5-fold
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cross-validation can give overly optimistic assessments of the
predictivity of the model.
Althoughmany ILs exhibit physical properties that make them

attractive as green chemistry solvents, they may be toxic to cells
and organisms. Cytotoxicity of ILs was the subject of QSPR
studies by Couling et al.188 (on the aquatic organisms V. fischeri
and D. magna), Garcia-Lorenzo et al.189 (on human Caco-2
cells), and Torrecilla et al.190 (on a leukemia rat cell line, and on
acetylcholinesterase). In the largest of these studies, Torrecilla
et al.190 modeled toxicity of 153 ammonium, imidazolium,
morpholinium, phosphonium, piperidinium, pyridinium, pyrro-
lidinium, and quinolinium ILs. They used simple constitutional
descriptors (number of rings, number of C, H, N, O atoms, and
molecular weight), PCA, MLR, and neural network methods to
model IPC-81 cell line toxicity (rat leukemia) and acetylcholi-
nesterase inhibition. The neural network models were the most
predictive, with r2 values of 0.97�0.98 for both biological
properties for the training set. Couling et al.188 found that toxicity
of their ILs toward the two aquatic organisms increases with the
number of nitrogen atoms in a cationic aromatic ring and also
increases with the alkyl chain length. Garcia-Lorenzo et al.189

observed a similar trend in the relationship between chain length
and toxicity of imidazolium-based ILs toward human Caco-2 cells.
A very useful resource for the study of ionic liquids, including

the QSPR modeling of their properties, is the NIST ILThermo
database191 that has free web access.192 As of mid-2010, this
database contained more than 94 600 data points, amounting to
339 ionic liquids. The compiled thermodynamic data (including
properties such as electrical conductivity, heat capacity, melting
temperature, refractive index, thermal diffusivity, viscosity, molar
volume, etc.) are available not only for pure ionic liquids but also
for binary and ternary mixtures.

5.6. Supercritical Carbon Dioxide
Like ionic liquids, supercritical fluids such as supercritical

carbon dioxide (scCO2) have become increasingly attractive as
solvents in chemical and industrial processes from a green
chemistry or environmental protection point of view. Carbon
dioxide becomes a supercritical fluid, at and above its critical
temperature of 31.1 �C and critical pressure of 7.38 MPa. scCO2

has properties combining those of gases and liquids; for example,
it diffuses through solids as well as solvates many organic
compounds. Such behavior, combined with its low cost, lack of
toxicity and flammability, low viscosity, and ease of removal and
recycling, lends itself to a wide range of applications. Examples
include decaffeinating coffee beans, use as a reaction medium for
organometallic compound synthesis, use as a solvent for dyes in
the textile industry, and manufacture of photovoltaic devices.
This section of the review will summarize only QSPR studies of
scCO2 as a solvent of organic dyes.

Most early attempts to model correlate solubility of dyes in
scCO2 have used empirical, semiempirical, or theoretical equa-
tions of state specifying the relationship between solubility and
quantities such as temperature, pressure, or density in some form
or other. Themost well-known andwidely used of thesemethods
is the Bartle equation.193 The largest study of this type was
published by Ferri et al.,194 who fitted a set of >400 data points
describing solubility of 16 azo and anthraquinone dyes in scCO2

to five literature equations and one novel semiempirical equation.
The best model gave predicted solubilities that differed from the
measured values by an average absolute percentage deviation of
9.0%. However, these types of models require at least one

empirical parameter to be derived from experimental
solubility data.

More recently, QSPR studies of solubility of dyes in scCO2

have used MLR and neural network methods to model the
relationship between measured solubility and selected molecular
descriptors over a wide range of temperatures and pressures. One
of the largest of such studies was by Hemmateenejad et al.,195 who
applied these methods to 1 190 data points describing the solubility
of 29 anthraquinone, anthrone, and xanthone derivatives at different
temperatures and pressures. One hundred eightmolecular quantum-
chemical, physicochemical, constitutional, and topological descrip-
tors were computed for each molecule. The set of best descriptors
selected for theMLRmodelswas then used in theANNmodels. The
rms error of prediction of pS (� logarithm of solubility) from the
MLRmodel was 0.28, whereas that from the neural network model
was significantly better at 0.10.

Studies by Burden and Winkler17,18 and Tabaraki et al.196,197

confirmed the superiority of nonlinear neural networks over
linear methods for modeling solubility in scCO2. Tarasova et al.
reported the most diverse set to date.19 They modeled scCO2

solubility of 67 dye compounds across a temperature range of
286�423 K and pressure range of 60�1400 bar, amounting to a
total of 685 data points. They generated linear and nonlinear
models using MLR with expectation maximization (MLREM)
and Bayesian regularized artificial neural network with Laplacian
prior (BRANNLP) methods. The former method was used to
select a sparse subset of context-relevant descriptors for theMLR
model,18 whereas BRANNLP uses a sparse Laplacian prior to
select descriptors in a nonlinear way and to prune weights in the
network.17 For the training set of 584 points, they obtain a
standard error of estimation of 0.34 and r2 value of 0.90 for the
best BRANNLP model, whereas the respective values with the
linear MLREM method were only 0.56 and 0.77, respectively.
Predictive performance on an independent test set was similar to
that of the training set, showing the model was quite robust
(Figure 14).

Temperature and pressure, hydrophobicity, total area, hy-
drogen-bond donor, number of rotatable bonds, positively
charged polar surface area, and molar refractivity were found
to be the most relevant descriptors in the final sparse
BRANNLP model. Khayamian and Esteki198 applied a wavelet
neural network (WNN) method to analyze the solubility of
polycyclic aromatic hydrocarbons,198 anthraquinone dyes,197

and azo dyes196 in scCO2. The WNN method uses wavelets
as basis functions to construct a feed-forward neural network
and has been found to be effective in solving convergence
problems.198 Finally, we anticipate that QSPR modeling of
solubility in scCO2 may be inherently easier than modeling
aqueous solubility or log P (octanol/water partition coefficient).
This is because of the much more complex nature of the
hydrogen-bond networks and molecular interactions in water.
For an excellent recent review of log P modeling, see paper by
Mannhold et al.199

5.7. Ceramics
QSAR/QSPR methods have only been applied to a small

number of studies of ceramics. The main purpose was to under-
stand the effect of ceramic components or structure on measured
properties, or to formulate ceramics that exhibit a desired
property.

Guo et al.200,201 investigated a data set of 21 BaTiO3-based
dielectric ceramic samples. The compositions of the ceramics
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were used as descriptors to build QSPR models predicting
different properties such as room-temperature dielectric loss
and permittivity and maximum and minimum temperature
coefficients of capacitance. A three-layer feed-forward neural
network was employed, with 4 output nodes that allowed 4
measured properties to be modeled simultaneously. Unfortu-
nately, the number of weights in the neural network with 5 input
nodes, 8 hidden layer nodes, and 4 output nodes was much
greater than the number of points in the data set, making
overfitting likely. This was also suggested by the very high
predictivity of the training set (r2 values of 1.00). The dynamic
ranges of some of the measured properties were also quite small
(1 log or less in some cases), also making the development of a
good model problematic. Lack of a test set made it hard to detect
anomalies in the models. The neural network model was used to
predict the properties of new compositions with modest success.
The data were also modeled by MLR model, using the ceramic
compositions and cross-terms (products of two compositional
variables) as independent variables. A 10-variable model was
reported but the large values for the descriptor coefficients
suggest the model was not robust.

Compositional descriptors and three-layer back-propagation
ANNs were also employed to model the electrical properties,
piezoelectric coefficient, and planar coupling coefficient for 21
samples of donor-doped piezoelectric ceramics.202 These authors
stated that these methods were effective and useful tools for
modeling the performance and composition of multicomponent
ceramic materials. As with the ceramic modeling studies reported
by Guo, this study by Cai et al. used a neural network architecture
that containedmanymore adjustable weights than the number of
samples in the training set, so this model risked overfitting as well.
However, the properties of 6 ceramics not used in training were
predicted with good accuracy, with test set r2 values between 0.88
and 0.94. No statistics were quoted for the QSPR model derived
from the training set.

The largest ceramic data set that has been modeled consisted
of 700 samples of dielectric materials and 1 100 samples of ion-
diffusion materials.203 The two data sets contained materials
comprised of 53 and 32 elements, respectively. The proportion of
each of these elements in the ceramic material formed the input
to the network. For ion-diffusion materials, the temperature at
which the coefficients were measured was also used as a network
input. PCAwas used to reduce the dimensionality of the data sets

while neural networks with 10-fold cross-validation were em-
ployed to build the models predicting the relative permittivity
and oxygen diffusion coefficient of the materials. The net-
works were relatively complex, employing 15 hidden layer
nodes and between 16 and 21 PCs in the input layer. A test set
was used to assess the accuracy and predictivity of the models.
The dielectric models had relatively low statistical signifi-
cance, with r2 values close to 0.42 (i.e., 42% of the variance in
the data explained). The ion-diffusion data set provided better
quality QSPR models, with r2 values of 0.77 and rms errors
of 2.1.

In summary, the ANNs provide a fast and robust tool to model
properties and support the formulation design of ceramic
materials, provided they are used correctly. The current limited
number of applications of QSPRmethods to ceramics is probably
due to the difficulties in gathering high-quality, large data sets
that can be used to generate reliable and robust models, as well as
the challenges of developing novel descriptors for this type of
material.

6. PERSPECTIVE ON QSPR MODELING OF MATERIALS

In compiling the information for this review, two points
emerge quite clearly: almost all material properties investi-
gated to date can be modeled by QSPR quite successfully and
accurately; some of the published studies are flawed in their
execution.

6.1. Summary of Material Property Prediction Examples
As stated in section 5, there are very few examples where new

materials have been synthesized on the basis of model prediction
and the properties of these new materials have been tested.
Those discussed in detail in the above section are summarized in
Table 2. The promise of QSPR models is that they have the
capacity to make good predictions, at least near their domains of
applicability, so they merit being used more frequently to design
materials with improved properties.

It is very encouraging that quite complex properties of
complicated materials can be modeled and predicted for new
materials with a surprising degree of fidelity, albeit largely
assessed through the use of independent test sets rather than
by accurate predictions of materials subsequently synthesized. In
all cases we have discussed, valid statistical models, some with
relatively few descriptors, have been generated. Properties like Tg

Figure 14. Graphical representation of the performance of the BRANNLP model showing the BRANNLP predicted versus experimental solubility
(log(S)) values for the (a) training and (b) test sets. Reprinted with permission from ref 19. Copyright 2010 Elsevier.
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appear to be easy to model using relatively simple and fast QSPR
methods. This augurs well for the future, when materials will be
generated by high-throughput synthesis and characterization
methods like those that transformed pharmaceutical and gene
research. QSPR methods will provide a fast and effective method
for extracting information and knowledge from very large data
sets, allowing materials property prediction and optimization
to be achieved relatively quickly. The key research component
of developing QSPR methods for materials modeling will
largely be the discovery of novel, improved ways of describing
materials (i.e., more efficient descriptors for materials than
those that currently exist). Another observation from the
review is that relatively few QSPR models have been used to
design or predict properties of new materials that were subse-
quently synthesized. This is the true test of a predictive model,
and the studies reviewed above suggest that real predictions are
achievable.

6.2. Summary of Pitfalls in QSPR Modeling
Section 4 described in detail the types of pitfalls new research-

ers employing QSPR can encounter. These pitfalls and methods
for avoiding them are summarized in Table 3.

It is clear that the QSPR community, historically based in the
pharmaceutical and environmental research arenas, will need to
ensure that the mistakes and pitfalls that inexperienced QSPR

practitioners commonly make are better understood. Referees of
materials-related journals will need to recognize poorly executed
QSPR models and return them for correction. The incidence of
flawed QSPR studies should not distract from the great utility of
the method when properly executed.

Two additional important needs that must be addressed by
the research community are development of new types of
mathematical descriptors to describe diverse, complex materials
and development of methods for incorporating sample history
into QSPR models. The mathematical descriptors used in
almost all published studies of QSPR modeling of materials
to date have been those developed for QSARmodeling of small,
discrete organic molecules to a large extent. Although these can
work well in many cases, the correct way to encode the
microscopic properties of different types of polymers (e.g.,
homo, block, cross-linked, doped, polymer blends, etc.),
nanoparticles (e.g., metal oxides, fullerenes, nanotubes, etc.),
catalysts, etc. is an important and challenging research topic.
Although synthesis and process variables can often be easily
combined with other types of materials intrinsic descriptors to
generate models (where sample history is important), record-
ing and mathematical encoding of sample history is in its
infancy. The development of rapid and automated high-
throughput methods of materials synthesis should greatly
improve this situation.

Table 2. Summary of New Materials Synthesized and Tested on the Basis of QSPR Modeling

study outcome

solubility of C60 in various solvents51 solubility of C60 in n-heptane and 1-octanol was predicted correctly by QSPR models, even when

these solvents were not present in the training set; see, however, comments by Puzyn et al.33

catalytic activity of metallocene catalysts

in ethylene polymerization68
predicted normalized catalytic activity of three new catalysts measured in another laboratory

to within experimental error

Tg of styrene copolymers and

poly(acrylonitrile-co-methyl acrylate)

(ANMA) copolymers117

model trained using only data for styrene polymers and could predict the properties of the

ANMA polymers very well

Table 3. Common QSPR modelling pitfalls and methods of avoiding them

pitfall recommendation to minimize or avoid

use of uninformative descriptors use descriptors that are related to the molecular structure where possible, use virtual

screening methods when complex descriptors are necessary, and develop new materials descriptors

overfitting, and grossly

underdetermined systems

reduce size of descriptor pool before building models,24 monitor number of fitted parameters

(descriptor weights or neural network weights) to ensure they are substantially less than the

number of experiments, and check that training and test set statistics are similar

descriptor selection and chance correlations use Topliss criteria22,23 to estimate probability of chance correlations and descriptor

scrambling; avoid methods where repeated sampling of a larger pool of descriptors is done

to obtain the optimum subset of descriptors; and use sparse, context-dependent feature-selection methods17,18

modeling complex, nonlinear

structure�property relationships

avoid overly complex nonlinear models, compare nonlinear model statistics with linear

models, and use regularizing methods that attempt to optimize model complexity16,17

validating QSPR models synthesize new materials that models predict to be superior and test if feasible, use independent

test sets to assess model predictivity otherwise, and employ cross-validation methods with caution27,28

domain of applicability of models calculate the range of all descriptors used to develop the model,29�32 avoid extrapolations

using descriptor space distant from that used in model, and use probabilistic modeling

methods (e.g., Bayesian regularization16) that allow estimation of likely prediction error

incorrect handling of outliers avoid removing outliers wherever possible, check whether outlier lies well within domain

before removing it, remove outliers sparingly and describe why they were omitted, and retest

properties for outliers to eliminate measurement of transcription errors
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7. CONCLUSION

Diverse QSPR techniques and algorithms have been devel-
oped and applied successfully for a wide range of material
properties from physical, chemical, and biological to mechanical,
electronic, and optical properties. They have become essential
technologies in a broad variety of research fields because of their
computational efficiency, scalability, robustness, and predictabil-
ity. There has been an enormous growth in high-performance
computing power that will benefit more compute-intensive and
complementary materials modeling methods like molecular dy-
namics and quantum mechanics. However, QSPR has the ad-
vantage of being capable of developing robust predictive models
of complex materials properties without requiring access to spe-
cialist computing facilities. QSPR modeling methods are ideally
suited to study large libraries of materials, from nanoscale
synthetic structures to complex biological materials. They have
also been used to fill large data gaps, significantly reducing time
and cost of the experimental work. However, usefulQSPRmodels
can only be built based on reliable data sets that are obtained from
well-designed experiments. As such, they should ideally be com-
bined with experimental design. Furthermore, the current QSPR
paradigm is facing challenges in identifying novel descriptors that
are relevant for modeling properties of new materials such as
nanoparticles. There is also a need to develop improved rational
prediction algorithms that can be applied efficiently to model
large data sets generated by high-throughput experiments. A close
collaboration between QSPR modellers and experimentalists
therefore plays an important role in helping elucidate the relation-
ship between the microscopic properties of material, their macro-
scopic properties, and synthesis.
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